
X10 --- a New Programming Model
for Productive Scalable Parallel

Programming

X10 --- a New Programming Model
for Productive Scalable Parallel

Programming

PMUA Workshop
June 21, 2005

Vivek Sarkar
(vsarkar@us.ibm.com)

IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

PMUA Workshop
June 21, 2005

Vivek Sarkar
(vsarkar@us.ibm.com)

IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

2 PMUA Workshop V. Sarkar

Acknowledgments

• PERCS Productivity
− Catalina Danis
− Christine Halverson

• PERCS University partners (Prog Model & Tools)
− DePaul University (X10)
− MIT (StreamIt)
− Purdue University (X10)
− UC Berkeley (StreamBit)
− U. Delaware (Atomic sections)
− U. Illinois (Fortran plug-in)
− UT Austin (Componentization)
− Vanderbilt University (Productivity metrics)

• PERCS Prog Model & Tools Team Leads
− Kemal Ebcioglu, Vivek Sarkar

• PERCS Principal Investigator
− Mootaz Elnozahy

• PERCS Project Manager
− Vickie Robinson

• X10 core team
− Philippe Charles
− Chris Donawa
− Kemal Ebcioglu
− Christian Grothoff
− Allan Kielstra
− Douglas Lovell
− Maged Michael
− Christoph von Praun
− Vijay Saraswat
− Vivek Sarkar

• PERCS Tools
− Marina Biberstein
− Julian Dolby
− Robert Fuhrer
− Emmanuel Geay
− Matthias Hauswirth
− Peter Sweeney
− Beth Tibbitts
− Frank Tip
− Mandana Vaziri

3 PMUA Workshop V. Sarkar

Scalability Challenges for
Scientific Applications

• Applications need to harness multiple heterogeneous levels of
parallelism and locality
− Cluster, SMP, multi-cores, SPU’s, SIMD, TLP, ILP

• Domain decomposition is already running into scaling limits at Tera-scale

• Load balance efficiency (Tavg/Tmax) is becoming a key limitation to
scalability

• Synchronous and bulk-synchronous programming models further limit
scalability …
− Frequent use of global barriers and global communications

• … as do programming models based on message passing and locks
− Frequent use of blocking operations

• Applications are getting increasingly complicated in their use of sparse,
irregular, and adaptive techniques

• Expertise Gap: domain scientists vs. system experts

4 PMUA Workshop V. Sarkar

PERCS Programming Model, Tools and Compilers:
Overall Architecture

X10 source code

Productivity
Metrics

X10
Development

Toolkit

Fortran source code
(w/ MPI, OpenMP)

Java
Development

Toolkit

C/C++ source code
(w/ MPI, OpenMP, UPC)

C/C++
Development

Toolkit
+ MPI tools

JavaTM source code
(w/ threads & conc utils)

Fortran
Development

Toolkit

. . .

. . .

C/C++
components

Fortran
components

C/C++ runtime Fortran runtime

Performance
Exploration

Productivity
Metrics

X10
Compiler

Java
Compiler

C/C++
Compiler

+ UPC support

Fortran
Compiler

. . .

. . .

X10
Components

X10 runtime

Integrated Concurrency Library: messages, threads, synchronization

Java
components

Java runtime

Performance
Exploration

Fast extern
interface

Parallel Tools
Platform (PTP)

Dynamic Compilation + Continuous Program Optimization

Text in blue
identifies
PERCS

contributions

Eclipse
platform

PERCS = Productive Easy-to-use Reliable Computing Systems

5 PMUA Workshop V. Sarkar

PERCS Technology Bets

X10

CPO

vHype

NMP

Storage-class
Memory Si-Carrier

Fat-tree
Opto-electrical
Interconnect

Large register fileConfigurable CPU’s

Low-power
design, adv.
packaging

eDRAM

Mambo

6 PMUA Workshop V. Sarkar

Future X10 Environment:
X10 Deployment on a PERCS HPC system

Fat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networks

Directly-connected
node block (D-block)

D-block

Storage and I/O
controllers

Other
Storage
Device

I/O
Device

PERCS
processor

chips

Fat-tree networks

ILP

SIMD

SMTs

Coprocessors (SPUs)

Multiple cores on a chip

SMP

Clusters (scale-out)

Thick
X10 VM

(I/O node)

Thin
X10 VM

(Compute
node)

7 PMUA Workshop V. Sarkar

Future X10 Environment

Very High Level Languages (VHLL’s),

Domain Specific Languages (DSL’s)

X10 High Level Language

X10 Deployment

HPC Runtime Environment

(Parallel Environment, MPI, LAPI, …)

HPC Parallel System

Implicit parallelism,

Implicit data distributions

X10 places --- abstraction
of explicit control & data
distribution

Mapping of places to nodes
in HPC Parallel Environment

Primitive constructs for
parallelism, communication,
and synchronization

Target system for parallel
application

X10 Libraries

8 PMUA Workshop V. Sarkar

Overview of X10 Programming Model

• Place = collection of activities & objects
− Activities and data objects do not move after

being created (but place-processor mapping
can be changed)

• Scalar object, O -- maps to a single place specified
by O.location

• Array object, A – may be local to a place or
distributed across multiple places, as specified by
A.distribution

Storage classes:

• Immutable Data (I)

• PGAS
− Local Heap (LH)
− Remote Heap (RH)

• Activity Stacks (S)

Locally
Synchronous

(coherent access
to intra-place
shared heap)

Activity
Stacks (S)

Local Heap (LH)

Immutable Data (I)
-- final variables, value type instances

. . .
Activities

Activity
Stacks (S)

Local Heap (LH)

. . .
Activities

Outbound
activities

Inbound
activities

Outbound
activity
replies

Inbound
activity
replies

. . .
Globally

Asynchronous

Partitioned Global Address Space (PGAS)

Place 0 Place (MAX_PLACES -1)

9 PMUA Workshop V. Sarkar

Locality Rule
• Any access to a mutable (shared heap) datum must be performed by an

activity located at the place as the datum
• No data sharing permitted for stack locations

− Not even between parent activity’s stack and child activity’s stack
• Local-to-remote (LH RH) and remote-to-local (RH LH) heap

references are freely permitted
• However, direct access via a remote heap reference is not permitted!
• Inter-place data accesses can only be performed by creating remote

activities …
− … with weaker ordering guarantees than intra-place data accesses

• The locality rule is checked at runtime by default
− BadPlaceException is thrown on an access to a remote reference
− Locality checks can be optimized (analogous to optimization of

bounds checks and type checks)

10 PMUA Workshop V. Sarkar

Memory Model
• X10 focus is on data-race-free applications

• Programmer uses atomic / finish / force / clock operations to avoid data
races
− X10 programming environment also includes data race detection tool

• No data races can occur on data that is activity-local or immutable

• Globally Asynchronous …
− Weak ordering of inter-place activities

• … and Local Synchronous (GALS)
− Guaranteed coherence for local heap --- all writes to same shared

location are observed in same order by all activities in the same place

11 PMUA Workshop V. Sarkar

Activity Execution within a Place

Outbound
activities

Inbound
activities

Outbound
replies Inbound

replies

Place
Ready

Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Atomic sections do
not have blocking

semantics

Place-local activity
can only its stack (S),
place-local heap (LH),
or immutable data (I)

12 PMUA Workshop V. Sarkar

X10 vs. JavaTM languages

• X10 is an extended subset of the Java language
− Base language = Java 1.4 language

• Java 5 features (generics, metadata, etc.) are currently not
supported in X10

− Notable features removed from Java language
• Concurrency --- threads, synchronized, etc.
• Java arrays – replaced by X10 arrays

− Notable features added to Java language
• Concurrency – async, finish, atomic, future, force, foreach, ateach,

clocks
• Distribution --- points, distributions
• X10 arrays --- multidimensional distributed arrays, array reductions,

array initializers,
• Serial constructs --- nullable, const, extern, value types

• X10 supports both OO and non-OO programming paradigms

13 PMUA Workshop V. Sarkar

Calling foreign functions
from X10 programs

• Java methods
− Can be called directly from X10 programs

• Makes ecosystem of Java libraries automatically available to
X10 programmer

− Java class will be loaded automatically as part of X10
program execution

• C functions
− Need to use extern declaration in X10, and perform a

System.loadLibrary() call

14 PMUA Workshop V. Sarkar

X10 v0.409 Cheat Sheet

Stm:

async [(Place)] [clocked ClockList] Stm

finish Stm

atomic Stm

when (SimpleExpr) Stm

next; c.resume() c.drop()

for(point p : Region) Stm

foreach (point p : Region) Stm

ateach (point p : Distribution) Stm

ClassModifier : Kind

Kind :
value | reference

DataType:

ClassName | InterfaceName | ArrayType

nullable DataType

future DataType

Expr:
ArrayExpr
FutureExpr . force()
here

MethodModifier: atomic

x10.lang has the following classes (among others)

point, range, region, dist, clock, array

Some of these are supported by special syntax.

15 PMUA Workshop V. Sarkar

X10 v0.409 Cheat Sheet:
Array support

ArrayExpr:

new ArrayType (Formal) { Stm }

Distribution Expr -- Lifting

ArrayExpr [Region] -- Section

ArrayExpr | Distribution -- Restriction

ArrayExpr || ArrayExpr -- Union

ArrayExpr.overlay(ArrayExpr) -- Update

ArrayExpr. scan([fun [, ArgList])

ArrayExpr. reduce([fun [, ArgList])

ArrayExpr.lift([fun [, ArgList])

ArrayType:

Type [Kind] []

Type [Kind] [region(N)]

Type [Kind] [Region]

Type [Kind] [Distribution]

Region:

Expr : Expr -- 1-D region

[Range, …, Range] -- Multidimensional Region

Region && Region -- Intersection

Region || Region -- Union

Region – Region -- Set difference

BuiltinRegion

Distribution:

Region -> Place -- Constant Distribution

Distribution | Place -- Restriction

Distribution | Region -- Restriction

Distribution || Distribution -- Union

Distribution – Distribution -- Set difference

Distribution.overlay (Distribution)

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety

16 PMUA Workshop V. Sarkar

RandomAccess Example in X10
public boolean run() {

distribution D = distribution.factory.block(TABLE_SIZE);

long[.] table = new long[D] (point [i]) { return i; }

long[.] RanStarts = new long[distribution.factory.unique()]

(point [i]) { return starts(i);};

long[.] SmallTable = new long value[TABLE_SIZE]

(point [i]) {return i*S_TABLE_INIT;};

finish ateach (point [i] : RanStarts) {

long ran = nextRandom(RanStarts[i]);

for (int count: 1:N_UPDATES_PER_PLACE) {

int J = f(ran);

long K = SmallTable[g(ran)];

async atomic table[J] ^= K;

ran = nextRandom(ran);

}

}

return table.sum() == EXPECTED_RESULT;

}

Allocate and initialize RanStarts with
one random number seed for each
place.

Allocate and initialize table as a
block-distributed array.

Everywhere in parallel, repeatedly
generate random table indices and
atomically read/modify/write table
element.

Allocate a small immutable table that
can be copied to all places.

17 PMUA Workshop V. Sarkar

ArrayCopy example: example of high-
level optimizations of async activities

Version 1 (orginal):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn an activity for each index to
// fetch and copy the value

ateach (i : D.region)
a[i] = async b[i];

}

Version 2 (optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per place
ateach (D.places)

for (j : D | here)
a[i] = async b[i];

}

Version 3 (further optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an
// index in (D | here).

ateach (D.places) {
region LocalD = (D | here).region;
ateach (p : E[LocalD]) {

region RemoteE = (E | p).region;
region Common =

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

}

18 PMUA Workshop V. Sarkar

Relating optimizations for past programming
paradigms to X10 optimizations

Data distribution, synchronization &
communication optimizations

Partitioned global, activity
local

Single activity per
place

NUMA

Data layout optimizations, page locality
optimizations

Partitioned global, activity
local

MultipleDSM e.g.,
TreadMarks

Localization, SPMDization,
synchronization & communication
optimizations

Partitioned global, place localSingle activity per
place

PGAS e.g.,
Titanium, UPC

Message aggregation, synchronization
optimization

Place-local, activity localMultipleFutures / active
messages

SPMDization, synchronization &
communication optimizations

Partitioned globalSingle global
program

Data parallel
e.g., HPF

All of the abovePartitioned-global, place-local,
activity-local

Multiple activities in
multiple places

Full X10

SIMDization, data communication, &
synchronization optimizations

Partitioned-global, place-localSingle activity per
place

Co-processor
e.g., STI Cell

Message aggregation, optimization of
barriers & reductions

Place localSingle activity per
place

Message-
passing e.g.,
MPI

Important optimizationsStorage classesActivitiesProgramming
paradigm

19 PMUA Workshop V. Sarkar

Support for irregular computations ---
generalize distributed arrays to distributed collections

(work in progress)

• Distributed Collections
− Map collection elements to places
− Collection<D,E> identifies a collection with

distribution D and element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach (e : C) { … here … }

• Sequential iterator
− for (e : C)

20 PMUA Workshop V. Sarkar

X10 status and schedule
• 6/2003 PERCS programming model concept (end of PERCS Phase 1)

• 7/2004 Start of PERCS Phase 2

• 2/2004 Kickoff of X10 as concrete embodiment of PERCS
programming model as a new language

• 7/2004 First draft of X10 language specification

• 2/2005 First X10 implementation -- unoptimized single-VM prototype
» Emulates distributed parallelism in a single process

• 5/2005 X10 productivity study at Pittsburgh Supercomputing Center

• 7/2005 Results from X10 application & productivity studies

• 2H2005 Revise language based on application & productivity feedback

• 1/2006 Second X10 implementation – optimized multi-VM prototype

• 6/2006 Open source release of X10 reference implementation

• 7/2006 Phase 3 scheduled to start ….

21 PMUA Workshop V. Sarkar

Current X10 Environment:
Unoptimized Single-VM Implementation

Foo.x10

x10c X10 compiler --- translates Foo.x10 to Foo.java,
uses javac to generate Foo.class from Foo.java

Foo.class

X10 source program --- must contain a class
named Foo with a “public static void main(String[]
args) method

X10 Virtual Machine
(JVM + J2SE libraries +

X10 libraries +
X10 Multithreaded Runtime)

External DLL’s

X10 extern
interface

X10 Abstract Performance Metrics
(event counts, distribution efficiency)X10 Program Output

X10 program translated into Java ---
// #line pseudocomment in Foo.java
specifies source line mapping in Foo.x10

Foo.java

x10c Foo.x10

x10 Foo

Caveat: this is a prototype
implementation with many limitations.

22 PMUA Workshop V. Sarkar

Parallel Programming Pitfalls:
Deadlock

• X10 guarantee
− Any program written with async, finish, atomic, foreach, ateach,

and clock parallel constructs will never deadlock

• Unrestricted use of future and force may lead to deadlock:
− f1 = future { a1() } ;
− f2 = future { a2() };
− int a1() { … f2.force(); … }
− Int a2() { … f1.force(); … }

• Restricted use of future and force in X10 can preserve guaranteed
freedom from deadlocks
− Sufficient condition #1: ensure that activity that creates the

future also performs the force() operation
− Sufficient condition #2: . . .

23 PMUA Workshop V. Sarkar

Parallel Programming Pitfalls:
Data Races

• A data race occurs when two (or more) threads/activities can access
the same shared location in parallel such that one of the accesses is
a write operation
− Can also occur with asynchronous activities e.g., DMA, I/O

• Example:
− Thread 0: a++ ; b-- ;
− Thread 1: a++ ; b--;
− Data race can violate invariant that (a+b) is constant
− Data race may also prevent multiple increments from being

combined correctly

• X10 guidelines for avoiding data races
− Use atomic methods and blocks without worrying about

deadlock
− Declare data to be immutable (i.e., final or value type instance) or

thread-local whenever possible

24 PMUA Workshop V. Sarkar

Scalability Challenges for Scientific
Applications: Summary of PERCS solutions

• Applications need to harness multiple heterogeneous levels of parallelism and locality
Write portable code in X10 using places, async’s, and other language constructs

• Domain decomposition is already running into scaling limits at Tera-scale
X10 integrates cluster-level and thread-level parallelism with first-class language support

• Load balance efficiency is becoming a key limitation to scalability
Use PERCS CPO to optimize X10 distributions and deployment

• Synchronous and bulk-synchronous programming models further limit scalability …
X10 programs are asynchronous by default; finish and clocks are more restricitive in scope
than global barriers

• … as do programming models based on message passing and locks
X10 offers easy-to-use non-blocking constructs (async, atomic)

• Applications are getting increasingly complicated in their use of sparse, irregular, and adaptive
techniques

X10 regions and distributions should be well suited to irregular applications --- adaptive
techniques are well suited to PERCS CPO

• Expertise Gap: domain scientists vs. system experts
PERCS tools are focused on separation of concerns between domain scientists and
system experts

