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Scalability Challenges for 
Scientific Applications

• Applications need to harness multiple heterogeneous levels of 
parallelism and locality
− Cluster, SMP, multi-cores, SPU’s, SIMD, TLP, ILP

• Domain decomposition is already running into scaling limits at Tera-scale

• Load balance efficiency (Tavg/Tmax) is becoming a key limitation to 
scalability

• Synchronous and bulk-synchronous programming models further limit 
scalability …
− Frequent use of global barriers and global communications

• … as do programming models based on message passing and locks
− Frequent use of blocking operations 

• Applications are getting increasingly complicated in their use of sparse, 
irregular, and adaptive techniques

• Expertise Gap: domain scientists vs. system experts
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PERCS Programming Model, Tools and Compilers: 
Overall Architecture
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PERCS Technology Bets
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Future X10 Environment:
X10 Deployment on a PERCS HPC system
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Future X10 Environment
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Overview of X10 Programming Model

• Place = collection of activities & objects 
− Activities and data objects do not move after 

being created (but place-processor mapping 
can be changed)

• Scalar object, O -- maps to a single place specified 
by O.location

• Array object, A – may be local to a place or 
distributed across multiple places, as specified by 
A.distribution

Storage classes:

• Immutable Data (I)

• PGAS
− Local Heap (LH)
− Remote Heap (RH)

• Activity Stacks (S)

Locally
Synchronous

(coherent access 
to intra-place 
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Locality Rule
• Any access to a mutable (shared heap) datum must be performed by an 

activity located at the place as the datum
• No data sharing permitted for stack locations

− Not even between parent activity’s stack and child activity’s stack
• Local-to-remote (LH RH) and remote-to-local (RH LH) heap 

references are freely permitted
• However, direct access via a remote heap reference is not permitted!
• Inter-place data accesses can only be performed by creating remote 

activities …
− … with weaker ordering guarantees than intra-place data accesses

• The locality rule is checked at runtime by default
− BadPlaceException is thrown on an access to a remote reference
− Locality checks can be optimized (analogous to optimization of 

bounds checks and type checks)
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Memory Model
• X10 focus is on data-race-free applications 

• Programmer uses atomic / finish / force / clock operations to avoid data 
races
− X10 programming environment also includes data race detection tool

• No data races can occur on data that is activity-local or immutable 

• Globally Asynchronous …
− Weak ordering of inter-place activities

• … and Local Synchronous (GALS)
− Guaranteed coherence for local heap --- all writes to same shared 

location are observed in same order by all activities in the same place
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Activity Execution within a Place
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X10 vs. JavaTM languages

• X10 is an extended subset of the Java language
− Base language = Java 1.4 language

• Java 5 features (generics, metadata, etc.) are currently not 
supported in X10

− Notable features removed from Java language
• Concurrency --- threads, synchronized, etc.
• Java arrays – replaced by X10 arrays

− Notable features added to Java language
• Concurrency – async, finish, atomic, future, force, foreach, ateach, 

clocks
• Distribution --- points, distributions
• X10 arrays --- multidimensional distributed arrays, array reductions, 

array initializers, 
• Serial constructs --- nullable, const, extern, value types

• X10 supports both OO and non-OO programming paradigms
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Calling foreign functions 
from X10 programs

• Java methods
− Can be called directly from X10 programs

• Makes ecosystem of Java libraries automatically available to 
X10 programmer

− Java class will be loaded automatically as part of X10 
program execution

• C functions
− Need to use extern declaration in X10, and perform a 

System.loadLibrary() call
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X10 v0.409 Cheat Sheet

Stm:

async [ ( Place ) ] [clocked ClockList ] Stm

finish Stm

atomic Stm

when ( SimpleExpr ) Stm

next;        c.resume()                  c.drop()

for( point p : Region ) Stm

foreach ( point p : Region ) Stm

ateach ( point p : Distribution ) Stm

ClassModifier :  Kind

Kind :
value | reference

DataType:

ClassName | InterfaceName | ArrayType

nullable DataType

future DataType

Expr:
ArrayExpr
FutureExpr . force()
here

MethodModifier: atomic

x10.lang has the following classes (among others)

point, range, region, dist, clock, array

Some of these are supported by special syntax.
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X10 v0.409 Cheat Sheet: 
Array support

ArrayExpr:

new ArrayType ( Formal ) { Stm }

Distribution Expr -- Lifting

ArrayExpr [ Region ]                           -- Section

ArrayExpr | Distribution -- Restriction

ArrayExpr || ArrayExpr -- Union

ArrayExpr.overlay(ArrayExpr)            -- Update

ArrayExpr. scan( [fun [, ArgList] )

ArrayExpr. reduce( [fun [, ArgList] )

ArrayExpr.lift( [fun [, ArgList] )

ArrayType:

Type [Kind]  [ ] 

Type [Kind]  [ region(N) ]

Type [Kind] [ Region ]

Type [Kind] [ Distribution ]

Region:

Expr : Expr -- 1-D region

[ Range, …, Range ]                   -- Multidimensional Region

Region && Region                     -- Intersection

Region || Region                         -- Union

Region – Region -- Set difference

BuiltinRegion

Distribution:

Region -> Place                             -- Constant Distribution

Distribution | Place                        -- Restriction

Distribution | Region                     -- Restriction

Distribution || Distribution             -- Union

Distribution – Distribution -- Set difference

Distribution.overlay ( Distribution )

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety
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RandomAccess Example in X10
public boolean run() {

distribution D = distribution.factory.block(TABLE_SIZE);

long[.] table = new long[D] (point [i]) { return i; }

long[.] RanStarts = new long[distribution.factory.unique()] 

(point [i]) { return starts(i);};

long[.] SmallTable = new long value[TABLE_SIZE] 

(point [i]) {return i*S_TABLE_INIT;};

finish ateach (point [i] : RanStarts ) {

long ran = nextRandom(RanStarts[i]);

for (int count: 1:N_UPDATES_PER_PLACE) {

int J = f(ran);

long K = SmallTable[g(ran)];  

async atomic table[J] ^= K;

ran = nextRandom(ran);

}

}

return table.sum() == EXPECTED_RESULT;

}

Allocate and initialize RanStarts with 
one random number seed for each 
place.

Allocate and initialize table as a 
block-distributed array.

Everywhere in parallel, repeatedly 
generate random table indices and 
atomically read/modify/write table 
element.

Allocate a small immutable table that 
can be copied to all places.
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ArrayCopy example: example of high-
level optimizations  of async activities

Version 1 (orginal):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn an activity for each index to 
// fetch and copy the value

ateach (i : D.region) 
a[i] = async b[i];

}

Version 2 (optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per place 
ateach ( D.places )  

for ( j : D | here ) 
a[i] = async b[i];

}

Version 3 (further optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an 
// index in (D | here).

ateach ( D.places ) {
region LocalD = (D | here).region;
ateach ( p : E[LocalD] ) {

region RemoteE = (E | p).region;
region Common = 

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

}
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Relating optimizations for past programming 
paradigms to X10 optimizations

Data distribution, synchronization & 
communication optimizations

Partitioned global, activity 
local

Single activity per 
place

NUMA

Data layout optimizations, page locality 
optimizations

Partitioned global, activity 
local

MultipleDSM e.g., 
TreadMarks

Localization, SPMDization, 
synchronization & communication 
optimizations

Partitioned global, place localSingle activity per 
place

PGAS e.g., 
Titanium, UPC

Message aggregation, synchronization 
optimization

Place-local, activity localMultipleFutures / active 
messages

SPMDization, synchronization & 
communication optimizations

Partitioned globalSingle global 
program

Data parallel 
e.g., HPF

All of the abovePartitioned-global, place-local, 
activity-local

Multiple activities in 
multiple places

Full X10

SIMDization, data communication, & 
synchronization optimizations

Partitioned-global, place-localSingle activity per 
place

Co-processor 
e.g., STI Cell

Message aggregation, optimization of 
barriers & reductions

Place localSingle activity per 
place

Message-
passing e.g., 
MPI

Important optimizationsStorage classesActivitiesProgramming 
paradigm
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Support for irregular computations ---
generalize distributed arrays to distributed collections

(work in progress)

• Distributed Collections
− Map collection elements to places
− Collection<D,E> identifies a collection with 

distribution D and element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach ( e : C ) { … here … }

• Sequential iterator
− for (e : C) 
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X10 status and schedule
• 6/2003 PERCS programming model concept (end of PERCS Phase 1)

• 7/2004 Start of PERCS Phase 2

• 2/2004 Kickoff of X10 as concrete embodiment of PERCS 
programming model as a new language

• 7/2004 First draft of X10 language specification

• 2/2005 First X10 implementation -- unoptimized single-VM prototype
» Emulates distributed parallelism in a single process

• 5/2005 X10 productivity study at Pittsburgh Supercomputing Center

• 7/2005 Results from X10 application & productivity studies

• 2H2005 Revise language based on application & productivity feedback

• 1/2006 Second X10 implementation – optimized multi-VM prototype

• 6/2006 Open source release of X10 reference implementation

• 7/2006 Phase 3 scheduled to start ….
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Current X10 Environment:
Unoptimized Single-VM Implementation

Foo.x10

x10c X10 compiler --- translates Foo.x10 to Foo.java, 
uses javac to generate Foo.class from Foo.java

Foo.class

X10 source program --- must contain a class 
named Foo with a “public static void main(String[] 
args) method

X10 Virtual Machine
(JVM + J2SE libraries + 

X10 libraries + 
X10 Multithreaded Runtime)

External DLL’s

X10 extern
interface

X10 Abstract Performance Metrics
(event counts, distribution efficiency)X10 Program Output

X10 program translated into Java ---
// #line pseudocomment in Foo.java
specifies source line mapping in Foo.x10

Foo.java

x10c Foo.x10

x10 Foo

Caveat: this is a prototype 
implementation with many limitations.  
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Parallel Programming Pitfalls: 
Deadlock

• X10 guarantee
− Any program written with async, finish, atomic, foreach, ateach, 

and clock parallel constructs will never deadlock

• Unrestricted use of future and force may lead to deadlock:
− f1 = future { a1() } ; 
− f2 = future { a2() };
− int a1() { … f2.force(); … }
− Int a2() { … f1.force(); … }

• Restricted use of future and force in X10 can preserve guaranteed 
freedom from deadlocks
− Sufficient condition #1: ensure that activity that creates the 

future also performs the force() operation
− Sufficient condition #2:  . . .
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Parallel Programming Pitfalls: 
Data Races

• A data race occurs when two (or more) threads/activities can access 
the same shared location in parallel such that one of the accesses is 
a write operation
− Can also occur with asynchronous activities e.g., DMA, I/O

• Example:
− Thread 0: a++ ; b-- ; 
− Thread 1: a++ ; b--;
− Data race can violate invariant that (a+b) is constant 
− Data race may also prevent multiple increments from being 

combined correctly

• X10 guidelines for avoiding data races
− Use atomic methods and blocks without worrying about 

deadlock
− Declare data to be immutable (i.e., final or value type instance) or 

thread-local whenever possible
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Scalability Challenges for Scientific 
Applications: Summary of PERCS solutions

• Applications need to harness multiple heterogeneous levels of parallelism and locality
Write portable code in X10 using places, async’s, and other language constructs

• Domain decomposition is already running into scaling limits at Tera-scale
X10 integrates cluster-level and thread-level parallelism with first-class language support

• Load balance efficiency is becoming a key limitation to scalability
Use PERCS CPO to optimize X10 distributions and deployment

• Synchronous and bulk-synchronous programming models further limit scalability …
X10 programs are asynchronous by default; finish and clocks are more restricitive in scope 
than global barriers

• … as do programming models based on message passing and locks
X10 offers easy-to-use non-blocking constructs (async, atomic)

• Applications are getting increasingly complicated in their use of sparse, irregular, and adaptive 
techniques

X10 regions and distributions should be well suited to irregular applications --- adaptive 
techniques are well suited to PERCS CPO

• Expertise Gap: domain scientists vs. system experts
PERCS tools are focused on separation of concerns between domain scientists and 
system experts


