
f t C 16' . l45 { ;
"

i i5! I : i : ; 1 ' ' t '6

Computer Science i11 pages

Research Report
Some Global Compiler Optimizations and
Architectural Features for lmproving
Performance of Superscalars

Kemal Ebcioglu

IBM Research Divis ion
T. J. Watson Research Center
Yorktown Heights. NY 10598

Randy Groves

IBM Advanced Workstat ions Div is iorr
11400 Burnet Road
Aust in, Texas 78758

NOTICE

This report wi l l be distr ibuted outside of IBM up to one Vear arter the IBM publ icat ion date.

E E
:=_-€

Researclr Divisiorr
i====== Almaden . T.J. Watson . Tokyo . zur ic l r

Some Global Compi ler Opt imizat ions and Arcir i tectural Features for
Improving Perforrnance of Soperscalars*

Kemal Ebcioflu
IBX'{ Research Division

Thomas J. lVatson Research Center

P.O. Box 218, Yorktown Heights, NY 10598

Randy Groves
IBM Advanced Workstations Division

11400 Burnet Road
Austin, Texas 78758

Abstract

We descr ibe a method for convert ing a given
progra.m in the assembly language of a super-
scalar machine to a,nother progra,m writ ten in
the sa.me assembly language, such that the re.-
sui t ing program produces the same l inal resui ts
as to the or ig ina. i one, and can run signi f ica.nt ly
faster. The method, inspired by new global
paral le l izat ion techniques {or VLiW archi tec-
tures, f inds and places together independent ly
executable operat ions that may be {ar apart
in f Lp

^" io i
.^ l

"nAo
(\ e f hat ma. hc s".^-uvqv
\r .v.r

vw ouyu

rated by many condi t ional branches or that
may belong to di f ferent i terat ions o{ a. loop.)
As a resul t , the pipel ined {unct ionai uni ts in
the machine, which could not be kept busy be-
cause of the l imi ted s ize o{ the execut ion looka"-
head window in the hardware, a.re given more
work to do, and higher per{ormance is achieved.
We discuss some new archi tectural features and
software support required [or speculat i?e opera-
t ions, that resul t f rom moving operat ions a.bove
condi t ional jumps as pa"r t of the techniques.
As a prel iminary demonstrat ion o{ the value of
the techniques, an inner loop of the sequent ia l
natured SPEC Lisp Interpreter benchma.rk is
automat ica. j ly paral le l ized; the resul t indicates
a potent ia. i performance of 3.5 RISC instruc-
t ions/cycle in th is inner Ioop.

Some Global Compi ler Opt imizat ions and Archi tectural Features for
Improving Performance of Srperscalars*

Kemal Ebcio$lu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598

Abstract

We descr ibe a method for convert ing a given
program in the assembly language of a super-
scala"r ma.chine to another program written in
the same assembly language, such that the re-
suJ.ting program produces the same fi.nal results
a,s to the original one, and ca,n run significantly
faster. The method, inspired by new global
pa"rallelization techniques for VLIW archltec-
tures, f inds and places together independent ly
cyerrr t :h le n.o"r+i^." * i . . r

- . "
l .^ f -, r - , *Lions rnaI may De Ia"r apal t

in the or ig inal code (i .e. , that may be sepa-
rated by many condi t ional branches or that
may belong lo di ferent i terat ions o{ a ioop.)
As a resui t , the pipel ined funct ionai uni ts in
the machine, which could not be kept busy be-
cause of the l imited size of the execution looka.-
hea,d window in the hardwarer are given more
work to do, and higher performa.nce is achieved.
We discuss some new architectural features and
software support required lor speculat iue opera,-
t ions, that resul t f iom moving operat ions above
eonr l i t innal i r rmnc ," nerf n{ rL. f .^}Jurrr f - *- r*- __,Jntques.

As a prel iminary demonstrat ion of the value of
the techniques, an inner ioop of the sequent ia l
natured SPEC Lisp In ierpreter benchmark is
automa.tically parallelized; the result indicates
a potential performance o{ 3.5 RISC instruc-
l ions/cycle in th is inner loop.

1 Introduction

A great amount of attention is presently being paid to
improving the performance of RISC processors. The su-
perscalar architecture is a recent name coined to unipro-
cessors that can achieve a peak execution rate of more
than one instruct ion per cycle. Such archi tectures ex-
ecute a standard sequential instruction set such as one

'This paper was accepted to, and presented at lhe Inter-
nat ional ConJerence on Cornputer Design (ICCD-1990), heid
in Cambridge, Ma.ssachusetts, in September 1990. We were
Iate in submit t ing th is f inal paper, so i t does not appear in
the ICCD-1990 Proceedings.

Randy Groves
IBM Advanced Workstations Division

11400 Burnet Road
Austin, Texas 78758

normaliy executed by RISC uniprocessors, but are abie
to fetch and dispatch to their muitiple functional units a
peak of two or more instruct ions in each cycle (e.g. the
Intel i860[8]) .

Speedup measurements on superscalar machines
tested on existing code genera.ted by existing compilers
have so.far been disappoint ing. For example M.D. Smith
et al . L10l indicate that pract icai speedups over an ex-
isting RISC processor would be l imited to a factor of
about 2 even with aggressive superscalar configurations.
S-i ih ' " n^nFr np\/Frthelpcc menf innc tLp n^c^; l - i l :+ ' , +1.^+JlrrrLfr r yoPEr rrcvcl L l rerurr .] rL lJursturt lLy LlL6!

lur ther speed u p might be achieved i f a compi ler were ab]e
" ^;-- i4^^-+r" - -^--^nge the instr lcr . lons. but does not!v JrSl t l l tUcl lUly lcGt lOrL6s L-. ! r ' !JUr uvLrvrLJt L

eiaborate on the techniques of how to do this. The pur-
pose of our present paper is to descr ibe some new global
compi ler opt imizat ion techniques and archi tectural fea-
tures to help overcome the obstacies io speedup on su-
perscalar architectures.

One potential reason for poor per{ormance of unipro-
cessors on exist ing code is the smai l Iookahead window
o{ the hardware, which l imi ts the paral le l ism that can
be extracted. Another reason is the unpredictabi l i ty of
branches, and the expense and di f f icul ty of maintaining
execut ion state on al l possible paths in hardware, in case
one tr ied to avoid branch predict ion, and execute opera-
t ions on al l paths instead. A thi rd reason is the di f fcul ty
of maintaining a sustained execut ion rate of several con-
di t ional branches per cycie, to a.chieve a high degree of
per{ormance in system code; in system code branches are
very f requent, so high branch throughput seems manda-
tory. The so{tware and hardwa.re techniques described
here should help to solve some of the problems listed
a,bove.

The techniques outl ined in this pa,per a.re inspired by
the new compilation techniques and architectural fea-
tures that have been incorporated in the compi ler and
architecture for the IBM VLIW machine project at the
IBM T.J. Watson Research Center ([2, 1, 3]) . This
project consists of the design of a pa.railelizing compiler
and an archi tecture (whose prototype is being bui l t) , for
extracting parallelism from extremeiy sequential, non-
numerical code. Our compiler techniques can bring to-
gether in the sa.me VLIW instruction independentiy ex-
ecutable operations and tests that may be separated by

rnany condi i lo iu i t l la- i rc l r , , , l , , , l l : o l ' l l rna, i code, or that

mav belong to drr f e lenL, i te iet ions oi ' a loop. The re-
sul t ing code can i \ -cute upe'" t ions on atL paths a.s soon
ac thpir

^.otrn,- .] .
r "o.o^.] r , i f .o.^ ' , " .o".. - - - -ermlt ; regls-

' .e" rena.mins ro.na- i ntajn eXecut ion on snnl i in ie na.rhs
is managed at compi le t ime. Resources are conserved
by stopping execut ion ol the remaining operar ions on
a path, as soon as l t is known that the path wi .LI not
be ra.ker. Alsn. the ^nmni ler merops redr l1d6.n1 66p-
putat ions on mult ip le paths into a s ingle compurarron,
to conserve resources further. Advanced memory dis-
ambiguat ion techniques (enhancements of those used in
the Bulldog compiler [f]) u." used {or determining if two
memory references can access the same location.

The thrust of the present pa,per is not a new compi-
lat ion technique for superscaiars, but a mapping l rom
VLIW instruct ions to groups of independent ly exe-
cutable RISC/superscalar instruct ions, that , a lbei t s im-
ple, make these very aggressive pa.railelization techniques
tha"t we heretofore thought to be a,pplicable mainly to
VLIW's, applicable to plain superscalar code as well, of-
{ering the possibil i ty of high speedups on superscalars.
We will describe the features of our project rela.ted to
superscalar ma"chines below.

2 Overview of our VLIW Architecture
' fhe superscalar archi [ecture we are a.ssuming is a ma.-
chine where groups of reguiar RISC instruct ions are used
for abbrevia. t ing a VLIW instruct ion. ' lo understand the
sunersca. l a.r model i t ls f i rst ncrcqqar\ / tn evnlain fLo i . -uv u^yrqrr(urru rrr

struct ion semant ics for our VLIW machine.
Our VLIW ma.chine has mult ip le funct ional uni ts a. l l

of which sha.re a register f l ie and mult ip le condi t ion code
regis lers that a"ssume binary values (t rue or fa lse). I t
supports mult iway branching and condi t ional execut ion.

The instruct ions of the machine have the form of a de-
r : is ion t ree /nlea.se refer to the eya.mnle t ree labeled L8 at
i ts root, g iven below). The tree is encoded in binary form
in the instruct ion word. At the terminal nodes of the
tree there are labels, which th is instruct ion can branch
to. At each non-termina, l node o{ the t ree, there is a test
on a condi t ion code register (the machine has mult ip le
condi t ion code registers). On each directed edge of the
tree there can be zero or more three-register arithmetic
operat ions, or memory loads/stores. An instruct ion is
executed in a s ingle machine cycle. t Conceptual ly, there
are two pha.ses in the machine cycle: the path select ion
pha"se and the execution pha.se.

At the path select ion phase, the machine determines
a. unique pa,th from the root of the tree to a tip node of
the tree, ba.sed on th.e old values of the condition code
registers tha, t were sei in the previous instruct ions, in a
decision tree l ike fashion. If the test on a siven node is

'n OP is an n cycle pipel ined operat ion, i t can be can
be represented in th is s ingle cycle paradigm as n s ingle cycle
operat ions, one "r1 OP 12

-
r3", fo l lowed by t , - 1 "delay

13 * 13" operat ions. Delay opera. t ions do not take resources,
and have the semant ics of a copy operat ion.

t rue, the la i<en pai lL blal : , : i res ;o i f r r ic l i) o lherwise ihe
Laken path branches rc, \c 'ghr. iThis conceptual ly
.e^npni i " l . "^"o"" ic r^- l - . , l^ . - , . ' : r ' r ' ^- ' ,

f .^ '
- . " .1r- lt rvLvrr l r tcdl l ,v uul tc vvrr t t vcty tdJL, PdtoIc l

nalowarel .

At thc cveett l !nn
^hr.o ^.1. ,

thc lLree-re- i " ! - . . " i l l -u. ,uru, urrrJ .LSIJLsl o l tL l r -

me[ic operat ions and loads/slores t ,hat are on the se-
iected path are executed, using the old values of lhe reg-
isters availa.ble from the previous instruction as operands
or storage addresses. (Even i f one operat ion such as
r op A ---+ z sets the source register z of another opera-
t\on z op 1r

-
11, simulta,neous execution is possible since

z op w wil l use ihe old value of z available from the pre-
vious instruct ion). I f more than one operat ion sets the
sa,me dest inat ion register on the selected path, or stores
into the same memory byte, the operat ion c losest to the
tip node determines the final value in the destination
register or memory byte. A loa.d on the selected path
will read the memory before any stores are performed to
the same memory location.

Fina" l ly the resul ts of the operat ions are wr i t ten into
the register f i le. a.nd control branches to the instruct ion
whose label is indicated at the t ip node o{ the taken
branch of the current instruct ion. The nexi , instruct ion
wi i l observe the updated values of the registers, condi t ion
codes and storage locat ions.

For the sneci f ic i - rn lemcntat inn ' .here wi l I be a f in i te

l imi t on the number o{ dist inct ar i thmet ic operat ions,
loads/stores, and the number of branch target a.ddresses
in a pa"r t icular instruct ion. Otherwise, the shape of the
tree and the placement of operat ions on l ts edges can be
arbitra,ry. For a more detailed discussion on the archi-
tecture, and on how the seemingly complex instruct ion
semantics described here is implemented with a fast cy-
cle t ime, rea.ders should refer to [2] .

Now to exempl i ly how the tree instruct ions in our
VLIW paradigm can speed up sequent ia l natured code,
consider the {ollowing inner }oop taken from the tlyget-
ualue subrout ine of SPEC Lisp Interoreter benchmark.
We write the sequential code in the asiembly la.nguage of
a "generic" RISC ma,chine with several general purpose
registers and several boolean condition code registers.
This RISC machine can execute three register ar i th-
met ic operat ions, register- immediate ar i thmet ic opera-
t ions, compares, loads and stores using the base*index
or base*displacement addressing modes or the autoin-
crement variants of these addressing modes, and condi-
tional and unconditional branches. We a.ssume tl iat, to
prevent a pipeline stall, there must be at least one cycle
delay between a load and any operat ion using the resul t
register of that load, and at least one cycle dela.y between
a compare and a conditional. branch using the condition
code set by the compare, regardless of how ma,ny instruc-
t ions can be issued per cycle. The Intel i860(tm) has such
one cycie Ioad-use a,nd compare-branch delays, for exam-
ple. We will add these deiays as explicit instructions to
the original sequential code as shown below, to make it
f i t the single cycle pa.ra.digm of our VLIW compiler.

1 .qn ;- ,p- . - - ! .a- : , - . : r f { y- . - 'oel . \ /a_Ue
' ' " r ' "

*-" ! ! -J
blJ- " *

s' lorout lne lnneI loop

F.Vnlanat ion of "octstarq
aa or-rv tn looD:

rB = address of 1st e lement of i inked l is t

8 = of fset of cdr f ie ld
4 = of fset of car f i .e1d

13 = address of i tem to match as'ainst

Purpose of loop: Iook for an element x of the l is t
wi th car(car(x)) equal to 13, and i f found exj . t to

" found" 'a i th rg=car(x) . 0therwise, i f the end of
the l is t is reached, exi t to "endofchain"

loop:
load 8(r8)->rB :18= cdr(1st) = address of 2nd
delay r8->r8 ; to represent load-use del-ay
(r8==0) -) cco ;cco = (2nd == NULL)
delay cc0-> cc0 ;compare-branch delay
i f ccO goto endofchain ; i f 2nd=NULL go endofchain

L+
I

i f cc0 ; (1) i . f 2nd==NULL goto endofcharn

/ \
/ \ load 4(19)->r10 ; (1) r10=caar(2nd)

/ \ (r8==0)->cc0 ; (2) cc0=(3rd==NULL)
/ \ load 4(r8)->r9' ; (2) r9 '=car(3rd)

/ \ load 8(rB)->rB ;(3) r8=cdr(3rd)

i i ierar l ' l : ' lCv

I deiay r i " -) l .9

I delay r8->r8

L4

endofchain

L5

L5

load 4(r8)-> 19
delay r9-> 19
Ioad 4(r9)->r10
delay r10->r10
(r3==r10) -) cc1
delay cc1-> cc1
i4 h^+

^- l
r^+^ l^^F

found :

r9 is 1lve here

L1
I delay r8->r8
L2

(r8==0)->cc0 ;(1)
load 4(r8)->r9 ; (1)
load 8(r8) ->r8 ; (2)

; r9 = car(2nd)
'1naA-t tca r lo l r r r

. r1O = nar(nar(?nd))

" l
aar i - r tca io l arr

;cc1 = (r3 == car(car(2nd)))
'cnmnara-hranrh dpl ar
' - - " r - - ' - - -"-" - - - -Y
i i f (r3== car(car(2nd)))

;exi t at ' ' f ound"

:else goto loop with 2nd now
' -anlaccd t i lh 3rd a16.

. i r l la fnr nno errnla

dc l av r .0->i1 0 . i r . l l e f or one
delay cc0-)cc0
delay r9 ' -)19'
delay r8->r8

L6
| (r3==r10)->cc1 ;(1) ccl=(1J==6441(Zna))

i f cc0 ;(2) i f 3rd==NULL goto endofchaj .n"

/ \ load 4(19')->r10 ; (2) r1O=caar(3rd)

/ \ (r8==0)->cc0;(3)cc0=(4th==NULL)

/ \ load 4(r8)-)r9" ; (3) r9"-cax(4th)

/ \ load 8(r8)->r8 ; (4) r8=cdr(4th)

LO

.= addr
^f

4fh

= addr of Sth. .^ .
enoorcnaln:

h^ F^di F+^r6 F^f i n I nnn I i r re hprerru r95r>usrJ rs

We now show a few tree-instructions in our VLIW ar-
chitecture paradigm, which are the pa.railelized version
of the ahovp loon This VLIW code is a commented ver-
sion of the result tha.t was obtained automatically from
the sequentia.I code a.bove, by our VLiW parallelizing
compiler. To understand how the VLIW machine in-
struct ions work, and get a sense of what sort of paral-
lelization opportunities exist, we would suggest that the
reader verify that the parallel VLIW program (2 VLIW
cycles/ i terat ion = 3.5 useful RISC instruct ions/cycle),
is semantically equivalent to the origina,l sequential pro-
gram. This program fragment is probably one of the
more sequential natured fragments in the SPEC suite.

Ioop
l load 8(r8)->r8 ; (t) r8= cdr(1st) = address of 2nd
L1 ;"(1)" is the i terat ion number

cc1->cc1 ; id le for one cycle
r10->r10
cc0-)cc0
rg) ' ->r9 ')
r8-)18

endofchain ' '

L7

L7

dela-y

L8

Ini t ia l ly n=0
Ioop invar iants here, for n=0 , t ,2, . . .
cc1 = (13 == car(car(n+2nd)))
r10 = car(car(n+3xd))
ccO = (address of n+4th elem == I{ULL)

19 = car(n+2nd)
19' = car(n+3rd)
r9" = car(n+4th)
r8 = address of n+sth element
13 = parameter (sym) to match against

cc0= (2nd==NULL)
19 = car(2nd)
r8=cdr(2nd)=addr of 3rd

LJ

ccr ; (1 i l j r -S=caar 2nd exl t

\ (13==r10)->cc1

\ ; (2) cc1= (r3==caar 3rd)
i f cc0 ; (3) i . t 4th. l rJULL exi- t

19'-)r9 / \ r9 ' -) 19 ; (overhead)
/ \ ; (2) r9=car(n+3rd)

/ \ ;g)) -)Jg' ; (overhead)

endofchain" \ ; (3) 19)=car (n+4th)

\ load 4(r9 ' ') ->r10
\ ; (3)r1o-caar(n+4th))

\ (r8==o)->cc0

\ ; (a) 66Q=(n+gl l==NULL)
\ load 4(r8) ->r9 "

\ ; (a) r9"=car(n+5th)
\ load 8(r8) ->r8

\ ; \b, r6=cdr(n+btnl
LT ; =addr(n+6th)

endofchain " ; e .9. when coming here f rom L8,
I delay cc1->cc1 ;addr(n+4th) is known to be n: .1,

endoJchain ' ;but we st i l l need to check

. : jT]1LI1l i3 : . , i i i r i ,

ln a pre-ol 'def l r i . i , , i ls l i r . i i , ' - i r l , r l , : I j i l l l tne l r . , i l . ,

and get the same ei iec- i , r is ihe ! L- i \Al ins ' , iuci ion rvor i rc l

th is case is i l lustrated by the VLI\4/ instruct ions in the
SPf C I . lsn Internrer.e- ^. ' - -^-)^ D ' I ^ ^L - . t ranslat ionL r Lv urrp Li l ,vr p, u!ul cAor l lPIc. U uI nuul l d

ls not correct in general . Since a path on the VLM
instruct ion t ree may have operal ions such as x+4+x,
followed by x*8--+ y (one operation uses the old vajue
of a register set by the other) these operations have to
be reordered in lhe ser ia l code, by piacing an operat ion
or condi t ional jump that uses the old value of a register
before one that sets the same register to a new value.

One simple translation method from a VLIW tree to
RISC code, is to choose an opera,tion or test from the
t rpe that in RTSC ende. ca.n he execrr ted hefore al i thevvuv, vsl l

other operat ions and tests in the t ree without v io lat ing
the original VLIW semantics, emit the RISC instruc-
t ion corresponding to th is operat ion or test , delete al i of
its occurrences {rom the tree, and then recursively emit
code in the same way for the resul t ing t ree(s). In the
ca.se of a. Lest node. dclet ino i f . f rnm thc t ree resul ts ina uvou 4vsvt

two trees, one which behaves as i f the test were t rue,
and another which behaves as if the test were false; The
"branch taken" target of the RiSC conditional branch
corresponding to the test node wi l l be the RISC code
oeneratel hrr f Le {^"mer t rce and t l re

t 'hra.rg[
unta,ken"

rardal , r , ; l l l ' . tL- RIqf- .^ l^ danarr ter l hrr t | .p 1-r+^. +.--,d lBg! wl i l UC Ll lg tLIJU'-Uuc bcrts lo lcu Jy Ll tc ldLLcL Llcs.

For emntv t rees tha.t iust branch to the next VLIW tree
f . " .^ ' , " t . " . .1

'^ ,h." " l l ^^---+i^-- - - . .1
r6.r^ arp r lp iptpr l \

\Et luuul tLc.cu vvrtcr t or l uPgt6t tu!5 drtu Lc5L5 4rc uclc!gu/,

a RISC uncondi t ional branch wi l l be emit ted, unless the
branch target is the immediately fo l iowing RISC instruc-
t ion. Assume the tree has f i rst been re-arranged, so thai
mult ip le assignments to a register on the same tree path
have been el iminated. Then, a"n operat ion or test op in
the tree can be executed in RISC code be{ore al l other
operat ions and tests in the t ree without v io lat ing the
original VLIW tree semantics, if and only if the following
are all sa.tisfied: if op has a destination register, then this
register is not used as a source by any other opera,tion or
l ,est in Lhe i ree. and on pvprv na.fh n{ t .he t r :ee f rom theurr! ! rvv,

root to a t ip node, th is register is ei ther set on the path,
or is not l ive at the ta.rget VLIW instruct ion of the path;
if op is a store, it occurs a,s the first store on every path
of the t ree (we respect order of stores on each tree path),
and there are no loads in the tree ihat could access the
same locat ion. In some ca,ses only c i rcular ly dependent
operat ions such as x:-y and y:=x, which exchange the
values of x and y in the VLIW code, wi l l remain in a
tree; there is no possible order to execute these opera-
tions in RISC code, and get the same efect as the VLIW
instruct ion; so no operat ion can be chosen by the above
cr i ter ion. In th is ca.se, a new temporary dest inat ion reg-
ister t has to be introduced in the corresponding ser ia l
RISC code to break the dependence cycle (giv ing the
ser ia l code t :=y, y:=x, x:=t , in the above example). I f
temporaries were thus introduced, it may be useful to do
some further local compaction to attempt to recover the
Iost parailelism (otherwise, e.g. in the above exarnple,
t:=y and x:=t could have to be executed sequentially by

I-8
I

r i

f ound

endofchaln '

I
i f cc1

; iJ (caar(n+3rd)==13)
. i< i r l ro rnd i f ca

. r^ +^ +^, . - r , , i - r -o=6a;(n+3rd)
'6v

vv

/ \
found endoJchain

Dif ferent degrees of paral le l izat ion opportuni t ies exist
{or different sequential natured {ragments o{ the SPEC
benchma,rks, for example the inner loop of subrout ine
rmnnl ol ihe SPF,C ennl .n l . l . henchma.rL (13 jnstruct ions

with the gener ic RISC we def ined above) can be executed
at I cycle/ i terat ion on a VLIW with suf f ic ient resources.
More extensive exper iments on the SPEC benchmarks
and other appl icat ions wi l l provide a more def in i t ive an-
swer regarding the degree o{ the avai lable paral lel ism,
al though these prel iminary resul ts are very promising.

3 A superscalar machine based on our
VLIW architecture

We wi l l now descr ibe a model of a hypothet ical super-
scalar machine derived {rom our VLIW architecture.

The proposed superscaiar machine executes a group
of adjacent, independent RISC instruct ions every cycle.
The RISC's instruci ion set is the instruct ion set ol the
hypothet ical sequent ia l machine fed into our VLIW com-
pi ier . The group of RISC instruct ions corresponding to a
VLIW instruct ion is obtained by breaking up the VLIW
instruct ion into a sequence o{ ser ia} RISC instruct ions
tha,t perform a,n equivalent transformation on memory
a.nd registers. We call such a group of independent RISC
instruct ions. that are the t ranslat ion o{ a VLIW instruc-
t ion, a "VLIW group."

Sometimes it is possible to convert the operations and
tests in a VLIW tree to the corresponding group o{ in-
dependent RISC instructions in a straight{orward way,

l r ic supersc:r , ra,r hardr,vartr , '1epa

I ior a supersca. lar rv i i .h smal i r ' , rs, . i r rces) sa.y wi th 1-2

iunci ional uni is and i branch uni t , the technique sug-
gested above may be e asy to impJement as the natural

hardrvare dispatch mechanism. That is, the superscaiar

-^r ,
mo"elv FyF. l r tp rhe nevf crnt tn. f ar] iaecnt rnr l enpn-! r ruJ
" 'Lru!J

dent RISC instruct ions every cycle, or at least I /ve can
r , .e{rr l l r r

-^J" l
i t in the enmni lcr as i f i f d id sn even i f

the supersca,lar has a more complex dispatch mechanism
that can do more. To benef i t f rom the compi ler capabi l -
it ies, the original assembly code of the RISC can be first
converted to "sequent ia i" VLIW code with appropr iate
representation of the pipeline delays, with one operation
per VLIW tree instruction; then para"llelized by VLIW
techniques according to the finite resource constraints of
the machine; and then turned back to ser ia l assembly
code of the origina.l supersca.la.r (lhe delay r + r op-
erat ions are deleted at th is stage). Since pipei ine delay
cycles due to load-use, compare-branch and other depen-
dences have been explicit ly represented to the compiler
as VLIW instructions to fi l l , operaiions wii l be moved
across basic block and loop iteration boundaries to oc-
cupy these previously id le delay cycles, thus y ie ld ing bet-
ter performance than the original sequentiai code. This
global schedul ing approach is better than some previous
approaches that examined mainly a s ingle basic block at
a t imp {^"

"o^". lo" i .o
inctrrrr t inn.

^. ^ i .o l inod
, , . i . .^-

cessors (" e. [z]) .
The hardware implementat ion methods that could be

used to execute a la,rger group of independent operat ions
and condi t jonai jumps per cycle on a superscalar, are
beyond the scope of th js paper; we hope to discuss these
in a future paper.

For the sake of showing how the translat ion f rom the
VLIW tree- instruct ions to RISC code is done, we give
here the serialized RISC versions of each VLIW instruc-
t ion in the Lisp Interpreter exampie above. The delay
operat ions have been deleted. Hor izontal l ines indicate
VLIW group boundanes.

Loop:
load 8(r8)->r8 ; (1) r8=addr of Znd

(r8==0)->cc0 ; (1)
load 4(r8)->19 ; (r)
load 8(r8)->18 ;(Z)

66Q= (!nd==tJlJ l l)

19 = car(2nd)
r8 = cdr(2nd) = addr of 3rd

i f cc0 goto endofchain ; (1) i f 2nd==NULL exi t
Ioad 4(19)->r10 ; (1) r10 = car(car(2nd))
(r8=-0)-)ccO ;(2) ccO = (3rd == NULL)
load 4(r8)-)19' i (2) 19'= car(3rd)
load 8(r8)->r8 ; (3) r8 = cdr(3rd) = addr of 4th

(r3==r10)->cc1 ; (1) cc1= (13 == car(car(znd)))
i f cc0 goto endofchain ' ; (2) i f 3rd==NULL exi t
load 4(19')->110 ;(2) r10 = car(car(3rd)r
(r8==0)->ccO ;(S) ccO = (addr of 4th== I IULL)

load 4(r8)->r9" : (3) 19"= car(4th)
load 8(r8)->r8 : (4) r8=cdr(4th)eaddr of 5th

7 . .1
-^f ^

+^rn^

ry3==1lQ)-)cc1

r9'->r9
an+n anrtaf rh: in)

T9 1.

r9 ' -> r9 ; (2) (overhead) r9=car(n+3rd)
r9))-)r9 ' ; (3) (overhead) r9 '=car (n+4th)
load 4(r9")->r10 ; (3) r10=car(car(n+4th))
(r8==0)->cc0 ;(4) cc0=(addr of n+5th == NULL)
load 4(r8)->r9" ; (4)r9"=car(n+5th)
load 8(r8)->r8 ; (5) r8=cdr(n+5th)
goto L8

+^t, i i . . ,o

endofchain ' :

l ive here

;+ F-1 r^+^ +^t !n i

endofchain: . . .

;when coming here f rom L8,
;n+4th is ni l but st i l l need
:to check i f r3-=car(n+3rd)

4 The parallelization algorithm

The task of parallelizing {or the superscala.r machine
(with a matching VLIW machine) is then io start wi th
the sequent ia l code, paral le l ize i t for the correspond-
ing VLIW with the same number of resources, and
turn the resul t ing compacted VLI\ ,V t rees back into
icnrrent:a. l RISC:nstruct ions. There are several tech-

niques for compact ing VLIW code, including lL, 3, +,
9] and [5] . We wi l l descr ibe a version ol the enhanced
pipel ine schedul ing technique ([+]) used in our VLIW
^^*^i1."

k" ; . { , '
' l . t " i l " - . ' ,

k- {^. ' . , i . ^+he. n2nprcuurrrPr l9! uIrLrtJ, uLLorf5 I I I@y UC lVUltU l l r U! l rur PcPurr

mentioned above.
The input to the enhanced pipel ine schedul ing algo-

r i thm is a i is t of the t ree- instruct ions o{ a loop, sorted
in depth f i rst order.2 The input t rees contain only one
ar i thmet ie nnerat inn nr nne Inad /stnre or one condi t ional
branch, i .e. the input is sequent ia l code. The algor i thm
proceeds by construct ing the software pipel ined schedule
stage by stage. At each stage, a, data structure cal led
"fence" contains the set o{ VLIW instruct ions that wi l l
be f i l ied wi th operat ions dur ing th is stage. A synopsis of
the algori thm is as fol lows (the term "instruct ion" te{ers
to VLIW instruct ion here):

hl^. . fha anfr \ r incfr t ! . i inn nf ihe lnnn

i .n " fence". Mark each operat ion and test in

the loop as belonging to i terat ion 1.

whi le there are st i l -1 operat ions and tests f rom
r

-^-^rr ^- . ^-J +L. fence i s not emDtv dOa uEl4uaur l r . r rw u s|ry l j

for each i .nstruct ion n in the fence:

Move operat ions and condi t ional jumps that are
below n in the l is t to n (subject to f in i te
resource constraints) .
mark n " f i l led"

end for

2The algor i thm is appl ied to innermost loops f i rst , and
then to the next level of outer loops, and eventual ly to the
entire program, after the strongly connected part of each
pipel ined inner loop is represented as an atomic VLIW in-
struct ion at the next level outer loop.

i ,a l . i ience := ihe sr lccessors ! :

fence that are belon n 1n th€

2ro n^t \ ra+ rr f 1 I I or i j '

; , i i1 bers n of the

l isr and that

Remove fence instruct ions f rom the 11st and

append to the bottom of the 1ist . Increment

the l terat ion numbers oJ operat ions and tests

in the fence by 1.

fence := newfence

end whi le

The actual upward mot ion of the operat ions can be made
with a var iety o{ acyci ic code compact ion techniques, e.g.
([S]) . The above algor i thm wi i l terminate i f operat ions
in iteration n are chosen be{ore operations belonging to
alater i terat ion n!1,n12,. . . , s ince that way eventuai ly
no operations wil l remain from iteration 1. The reader
is encouraged to attempt to reconstruct the parallelized
version of the Lisp Interpreter loop start ing f rom i ,he
algorithm sketch given here.

5 On exceptions caused by speculative
operations

When, in the paral lel ized version of a program, an op-
erat ion is executed ear l ier than a condi t ional branch on
which i t was control dependent ([6]) in Lhe or ig i nal code,
,^ , . . "11 \ t a enprt , ln l t r rp nncrat inn A VT,IW enmni lcr marrLu & nPwue.uut vu \ /P!ruLiv i l

a,ggressively move an operat ion a.bove a, condi t ional jump

",hi"h nree cr lc l i ' in thc "r io i nal e nde a nd determined
whether i t wouid real)y be executed; thus, in lhe par-
ai le l ized code, th is speculat ive operat ion may execute
many cycles before the condi t iona" i jump that or ig inal ly
preceded i t . The intent here is to execute operat ions
before even knowing the outcome of condi t ionai jumps
thet nrcear le tLem in orr lcr f .o oain qome snee.]rrn i r rqt

in case the program decides to take a path that includes
these operat ions. Some operat ions that may cause fa-
tal errors (such as accessing a very high virtual mem-
ory address not available to the progra,m, or causing an
arithmetic overflow) wil i also be moved by the compiler
above condi t ional jumps ihat or ig inal ly preceded them.
The problem in th is case is whai the machine and operat-
ing system should do, when such a specula, t ive operat ion
causes an exception. The program should not necessariJ.y
be aborted, s ince i t is not even known whether the path
containing the operation would really be ta.ken in the
original, un-parallelized program. Specula,tive code mo-
tion can be very important, {or exampie no improvement
results in the Lisp Interpreter code above, unless loads
are moved above condi t ional jumps. Note that stotes ate
never specula,tive.

For exist ing machines where the instruct ion set cannot
be changed, there is not much to do except to fu l ly debug
the program in the unopt imized mode, and ihen, in the
paraiielized code, try to prevent or ignore any fatal er-
rors due to speculative operations belonging to untaken
pa,ths, but process any nonfatal exceptions, such as page
faults, a,s usual. Fatal memory exceptions due to spec-
ulative loa.ds on untaken paths (that could occur, if for

ei: i i i r ipLe i r L isp i r , i . r ' r r ' . t . : t : , l , i . . i , ' . .a i - : i a i ls i and i ts

"ca,r" f ield is lo;rcici- i i ,) ' , , rL1; ' ,- r , 'e rrperation beiore
even execut ing ih.- concl l t roral jurnp that tests i { i t is

an atom, accessing a random vir tual address beyond the

al lowable range), can be treated by ei ther providing an

extra read only page at the locat ion requesled by lhe
lo^d tn hone{rr l lv nrevent occurrence of the same errorarvyvrulrJ Hru

- - - :* : - ^ r^^^ ^- L ' , .FF^ienr lv lnnor ino rhe fatal errordB6l t t 111 O MPr Ul uJ cr l r t lc l tuLJ lSrturrrrS ur(r

at the first level interrupt handler. Note that a load wil l
he execrr led snecrr lat ivclv in the na.ra. l le l ized code and

wil.1 cause overhead by accessing an exira page not re{er-
enced by the original program, only if all of the following
are t rue: l -comput ing the base register of the load in the
parallel schedule takes shorter than computlng the con-
dition code which determines whether the load wiII realiy
be executed in the or ig inal code; 2-there are sumcient ly
large machine resources, or a sufficiently smali degree of
parai le l ism, for the compi ler to choose this speculat ive
load over other operat ions, dur ing those cycies where
the load address is rea.dy, but ihe condition code is not
yet ready (nonspeculative operations wil l be preferred to
speculative ones by the compiler when there is a schedul-
ing choice); 3- the or ig inal program takes a path where
this load is not executed; 4-the or ig inal program never
references the page addressed by the speculative Ioad (so
tho

^,ro
i " . i11". . nrr l n l h^ ' , . .1"

^"
\ " inr inr 'L:- - - -^:-vrrL poBU rr urorrur JUL Jl UOUltU5, UI DtI I tBl l tB t l t iJ PoBtr t l t

is def in i te ly useless). The solut ion then could be to al low
a possibly la.rger working set for an opt imized progfam,
a" long,,v i th the specia. l handl ing ol {atal errors. Measure-
ments o{ the var ious fa,ctors on an actual implementat ion
will determine the tradeoffs.

Code with author i ty to do memory mapped I /O loads
with s ide ef fects, cannot make use o{ these speculat ive
code mot ions, s ince speculat ive Ioads coming {rom un-
taken paths of the original program may in general a.c-
cess unpredictable addresses. Thus, al though our pro-
posal for using the VLIW compi ler techniques for a.n
exist ing ma,chine has the potent ia" l to improve per{or-
mance o{ the major i ty of operat ing sysiem ut i } i t ies, user
a,pplica"tions and kernel code; in order to rema,in safe re-
garding so{tware compatibii i ty, such aggressive compi}er
opt imizat ions would best be implemented as a new' op-
t ional h igh opt imizat ion level ln the compi lers, and the
operating system would have to be alerted to handle the
fatai exceptions in a way that differs from the default,
by a system call at the beginning o{ each program with
any speculat ive operat ions.

I f a superscalar machine is being designed from
scratch, a fairly comprehensive support for speculative
operat ions can be achieved by mimicking what is in the
IBM VLIW machine ([z]) . f] re techniques o{ the IBM
VLIW machine, described below, are very inexpensive to
implement, and provide a usable degree of error check-
iog.

In our VLIW architecture, every operation has a spec-
ula,tive and a nonspecuia,tive version (encoded by an ex-
tra bit in the opcodes). The compiler can ftttermine
which operations become speculative, when it moves a,n
operation above a conditional jump. The registers ha.ve

, . . ; , : . . l r r r . i r . , j t . , i t r j i) i j I r t t .11ts- (saved i rnd lesioIc. j

: t .cctoss I r l ') i j f r : : - rs swi tc i l es l . !v i rerL a speculat i ve operat ion

causes an.rror rn the " fa la. l et tot" c lass, lhe machlne

does noi take an interrupt, only the 33rd bi t of the resul t
register is set . !Vhen this resul t is used as an operand in

" , rhcenrrenj
.nc", , la1i17^ ^^^.^r l^-- +1"^ a1., h i t . js nron-ruuru9fv. ' ! rJJUUuroLrvg UPCtdLIUILJ Ul lc JdLu . . - - r - - r

aaa.f .eA -r t .he "psul ts r{ ' .hcqp nnc'a. t inns. The address

^l ihc n" io inal eyecnr:^* -^"^ l - - - -^-^*:-- can also beuL LtLC Ut lBlrLOl t r iLCPLlUl l -L6U51l l5 UPCrouLUlt

saved in the remaining 32 bi ts of the resul t , and prop-

"oatcr l
l ikc the i3rd hi t . . hrr t . when \nth nnerands of a

speculat ive operat ion have the 33rd bi t set , address in-
format ion in only one operand wi l l be propagated.) I f
one of the originai paths which contained the specula-
tive operation is f inaily taken, and the speculative op-
era. t ion resul t wi th ihe 33rd bi t=l is f inal ly used by a.
nonspeculat ive operat ion, an intetrupt wi l l occur. The
information in the operand which had the exception tag
bit set, can identify the original opera,tion which caused
the interrupt, and hence at least one possible l ine in the
source progra,m where this opera,tion could have come
from, assuming compiler tables were ma.intained. If the
path tha,t originally contained the speculative operation
is not ta,ken, nothing ha.ppens. The speculat ive opera-
tion then serves merely as an unnecessa,ry computation
afforded by the large resources of the machine, that does
not a,ffect the final outcome of the prosram.

(^-o ewcent innc f l iLc t ranqlal inn eveent innc
^r\ """

operand aLignment interrupts, or IEEE f loat ing point ex-
rpnt innc\ ere nnt neeeqsar i l r r la l .a l Tlr"qe

"a
n nnt hc iq-

nored even on except lons due to speculat ive operat ions.
A simple technique to use with the except ion tag a.nd
speculat ive opcode archi tectural features, is to process
the interrupt as usual anyway i f i t is nonfa. ta l (e.9. g ive
the program the requested page on a page faul t , handle
the ai ignment error) , and to resume the program wi ih
a resul t wi th the 33rd bi t set , i f the except ion is lound
to be fatal , but the operat ion causing i t is speculat ive.
The program can be aborted as usual, on a fa,tai excep-
t ion caused by a nonspeculat ive opera,t ion. Some extra,
except ions, that never occurred in the or ig inal sequen-
t ial. program, may also need to be handled with this ap-
proach, when a number of condi t ions (l ike those l is ted
above for memory exceptions) are simultaneously true.

Since speculat ive loads on u nta.ken paths may ac-
cess unpredicta,ble addresses in general, specuiat ive Ioads
that could cause side effects by touching I/O space ac-
cidental ly must be ignored by the ha.rdware (hardware
. r r

"o"^o. iop
fhat

"
l^"J ie cnprrr let i . ro f r^- fho

^--! r lv vy

code). I /O space loads with possible s ide efects can
only be nonspeculative, assuming the I/O space variables
are deciared in a speciai way in the high level language
progra.m, and the compiler inhibits the optimization o{
the instructions that access these. This approach allows
a machine with the exception tag/speculative opcodes
feature to perform uninhibited memory mapped I/O as
weil.

$ {ionciusions

We have descrrbed i i . methoci to apply i i ie compi ler a igo-
r i thms ior acnieving paralel l ism on VLIW macnines. LL,
superscala,r archi tectures. lVe have descr ibed t ,he archi-

I
- - l ^^^-^. i - - - , , - i^- -"

*Fl \ / ihe crrn_LtrLUUIGl Cl lU UPCr OLlI tS >yiLclLr JU PPVL Lr LL&rt lLL/

: r r f . for srecrr la i . ive 'ne!q 'n mal.c -ra.v inai use ci ihe
Pvr !]v1 ryv!u LGUr

-esorrr .es r f a srrnerscala- narh:re Al thn'roh a more ex-

tensive study is needed, our approach appears promising
fnr makino hei lcr r rse of qrrnerscala.r a.rc} i t ,ectures.

References

[1] Ebciof Iu, K. [1987]. A Compi lat ion Technique for
Snf i ,wa.re Pinel in i - - ^ f T ̂ ^-^ ' . ' ; {L Condi t ionaluvr ! vv or L r l } / u]-rLrILS Ul UUUPD vvl ! lL

Jumps. In Proceedings oJ the 20th Annual Work-
shop on Microprogramming, pp. 69-79, ACM Press.

[2] Ebcioi iu, K. l l988j . Some Design Ideas for a VLIW
Architecture for Sequential Natured So{tware. In
Paral le l Processing (Proceedings oJ IFIP WG 10.3
Working ConJerence on Paral le l Processing) , M.
Cosnard et a l . (eds.) , pp. 3-21, North Hol la.nd.

13] Ebcio[' lu, K. and Nicolau, A. [1989]. A Global Re-
source Constra,ined Parallelization Technique. Pro-
ceedings of 1989 Internat ional ConJerence on Su-
percomput ing, Crete, Greece, pp. 154-163.

fa] Ebciof]u, K. and Nakatani , ' f . 11989]. A Ne.u Cam-
pi lat ion Technique Jor Paral le l iz ing Loops wtt l t Un-
predictable Brancl tes on a VLIW ArclLztecture, Pro-
ceedings o{ the Second Workshop on Languages and
cnmni lcrq {nr par- i l^r ra^*- . .* l - - TT-: . .ers i tv nf I l l i_

-- . - - -drrc l vurrrPuLrrLF)t vt l rvrrrrLJ ur r-rr -

nois at Urbana-Champaign.

[5] El] is , J. [1986]. Bul ldos: A Compzler lor VLIW Ar-
chi tectures, MIT Press.

[6] Ferrante, J. , Ottenstein, K. , a.nd Warren, J. [1987].
The Program Dependence Graph and l ts Use in
0pt imizat ion ACM Transact ions on Programming
Languages and Systems, 9:3, pp. 319-349.

[7] Gibbons, P.B. and Muchnlck, S.S. [1986]. "Eff i -
c ient Instruct ion Schedul ing for Pipel ined Proces-
sors" Proc. SIGPLAN '86 Syrnposium on Compi ler
Construct ion, ACM Press, pp. 11-16.

[8] Intel Corp. 11989]. i860(tm) 6/+-bi t Microprocessor
Programmer's ReJerence Manual, Santa Clara, Cal-
i fornia.

[9] Na.katani , T. and Ebciof lu K. [1989]. "Combining"
as a Compilation Technique for VLIW Architec-
tures. Proceedings oJ the 22nd Workshop on Mi-
cropT-ogr'arnTnzng and Microarchiteclure, ACM and
IEEE, Dubl in, pp. 43-55.

[10] Smith, D., Johnson, M, and Horowitz, M. [1989].
Limits on Mult ip le Instruct ion Issue, Proceedings
o{ the Third Internationai Conference on Architec-
tural Support for Programming Languages and Op-
erat ing Systems (ASPLOS-[I) , ACM and IEEE,
Boston Ma.ssachusetts, pp. 290-302.

APPENDIX: An

(taken from the foi ls vve presented at ICCD-1990)
Search a l inked l js t for an element matching given key.

0r i g i na1 code:
13= address of I i s t
14= key to be compared agalnst
13= return value (nul l or address of matching record)

application of our VLIW compiler techniques
on the IBM RS/6000

'1 oop:
I r0,x(r3)
cmp cr0, r0, r4
beq crO, ret
I 13, l jnk(r3)

cmpi cr1,r3,0
bne cr1,1 oop

ret : return 13

I
2
0
't
l.

2
3

Perf ormance: 9 cyc' les/ j terat ' ion

RS/6000 pipel ine delays (lBM J. of R&D, January 1990):

* load into r - use r , delay is 1 cycle
* compare-taken cond. branch delay is 3 cycles (3 _ k cycles, i f there

are k instr . between compare and branch)
* compare-untaken cond. branch delay is 0 cycles (but an

uncondi t ional branch fol lowing the untaken branch may then incur
extra delay).

A previous technique for reducing branch delays on RSl6000

(Golumbic and Rainish, IBM J. of R&D, January 1990)

Moves a few instruct ions from the top of the loop to the bottom, to cover
compare-taken branch delay.

I oop:
I r0,x(13)
cmp cr0, r0, r4

1 oopl :
beq crO, ret 0
I 13, l jnk(r3) 1
cmpi cr1,13,0 2
beq cr1, ret 0
I rO,x (r3) I
cmp cr0, r0, 14 ?
b 1 oopl 0-1

ret : reLurn 13

6-7 cycl es/ i terat j on

Load-use delays are st i l l not covered

Compilat ion Stages for VLIW approach

* Unrol l /unwind inner loops

* Rename registers

* Insed dummy delay operat ions to represent pipel ine delays

* Convert to VLIW code

* VLIW compact ion and software pipel in ing (e,9. enhanced pipel ine
schedul ing, Ebcioglu-Nakatani 1989)

* Re-al locate registers

* Conved back to ser ia l code

10

Compilation Stages for VLIW approach

Code af ter unrol 1 i ng, renam' ing, de1 ay i nsert i on:
(State just before global "VLi t , l / " schedul ing)
tach cycle js a VLIW jnstruct jon to f i l l

1 oop: I F0' ,x(r3)
<1 delay on r0 '> /* t .g: I 13' ,1 ink(r3) moves here * /

cmp crO' , r0 ' , 14
<3 del ays on crO'>
beq crO' , ret
I 13' ,1 ink(r3)
<1 del ay on 13'>
cmpi cr l ' , 13' ,0
<3 del ays on cr l '>
beq cr1 ' , ret$
I r0 ' ' ,X(r3 ')
<de1 ay>
cmp crO' ' r r0" rr4
<3 del ays>
beq crO' ' , ret$
I 13", l jnk(r3 ')
<de1 ay>
cmpi cr1 ' ' , r3 ' ' ,0
<3 del ays>
beq cr1",ret$$

l l

Compilation Stages for VLIW approach

I r0,x(r3")
<de' lay>
cmp crO, r0, r4
<3 de1 ays>
beq crO,ret$$
I 13, l ink(r3")
<de1 ay>
cmpi cr1,13,0
<3 de1 ays>
bne cr1,1 oop

ret : return 13
,Aret$: l r 13,13'

b ret
ret$$: l r 13,13"

b ret

t2

I oop:

I oopl :

reE:
ret$:

rer)$:

Final result of VLIW

I r0, x (r3)
I 16,1 ink(r3)
cmp crO, r0, 14
cmp' i cr1,16,0
I r0,x(r6)
I 15,1 ink(16)
beq crO, ret
cmp crO, r0, 14
beq cr1, ret$
nmni nnl rE 0vr l rHr vt r r tJtr

I r0,x(r5)
I 13, l ink(15)
beq crO, ret$
-mn

nnf l l nA
f4vi l rP ur vt t \J,

beq cr1 , ret$$
cmpi cr l , 13,0
I rO,x (r3)
I 16,1 ink(13)
beq cr0, ret$$
cmp crO, r0, 14
bne cr1, i oopl
return 13
I r 13,16
b ret
l r 13,15
b ret

compi lation techniques

1
1
1
0
1
!

U

1
1
1
n

1
0
i
1
i
0
1
o

(tz

At
cycl es/3 ' i ter . = ?. .25X better than or i g i na' l vers i on.

least 1.5X better than Gol umbic-Ra jn ish version.)

13

Copies may he requested from:

IBNI 'Fhomas J. Watson Research Center
Distribution Services F- I I Stormvtown
Post Off ice Box 218
Yorktown I leiglr ts, New York 10598

