RC 16145 (71758

Computer Science 13 pages

Research Report

Some Global Compiler Optimizations and
Architectural Features for Improving
Performance of Superscalars

Kemal Ebcioglu

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

Randy Groves
IBM Advanced Workstations Division

11400 Burnet Road
Austin, Texas 78758

NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.

Research Division
Almaden <+ T.J. Watson * Tokyo < Zurich




Some Global Compiler Optimizations and Architectural Features for
Improving Performance of Superscalars”

Kemal Ebcioglu Randy Groves
IBM Research Division IBM Advanced Workstations Division
Thomas J. Watson Research Center 11400 Burnet Road
P.O. Box 218, Yorktown Heights, NY 10598 Austin, Texas 78758
Abstract

We describe a method for converting a given
program in the assembly language of a super-
scalar machine to another program written in
the same assembly language, such that the re-
sulting program produces the same final results
as to the original one, and can run significantly
faster. The method, inspired by new global
parallelization techniques for VLIW architec-
tures, finds and places together independently
executable operations that may be far apart
in the original code (i.e., that may be sepa-
rated by many conditional branches or that
may belong to different iterations of a loop.)
As a result, the pipelined functional units in
the machine, which could not be kept busy be-
cause of the limited size of the execution looka-
head window in the hardware, are given more
work to do, and higher performance is achieved.
We discuss some new architectural features and
software support required for speculative opera-
tions, that result from moving operations above
conditional jumps as part of the techniques.
As a preliminary demonstration of the value of
the techniques, an inner loop of the sequential
natured SPEC Lisp Interpreter benchmark is
automatically parallelized; the result indicates
a potential performance of 3.5 RISC instruc-
tions/cycle in this inner loop.
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1 Introduction

A great amount of attention is presently being paid to
improving the performance of RISC processors. The su-
perscalar architecture is a recent name coined to unipro-
cessors that can achieve a peak execution rate of more
than one instruction per cycle. Such architectures ex-
ecute a standard sequential instruction set such as one
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normally executed by RISC uniprocessors, but are able
to fetch and dispatch to their multiple functional units a
peak of two or more instructions in each cycle (e.g. the
Intel i860[8]).

Speedup measurements on superscalar machines
tested on existing code generated by existing compilers
have so far been disappointing. For example M.D. Smith
et al. [10] indicate that practical speedups over an ex-
isting RISC processor would be limited to a factor of
about 2 even with aggressive superscalar configurations.
Smith’s paper nevertheless mentions the possibility that
further speedup might be achieved if a compiler were able
to significantly rearrange the instructions, but does not
elaborate on the techniques of how to do this. The pur-
pose of our present paper is to describe some new global
compiler optimization techniques and architectural fea-
tures to help overcome the obstacles to speedup on su-
perscalar architectures.

One potential reason for poor performance of unipro-
cessors on existing code is the small lookahead window
of the hardware, which limits the parallelism that can
be extracted. Another reason is the unpredictability of
branches, and the expense and difficulty of maintaining
execution state on all possible paths in hardware, in case
one tried to avoid branch prediction, and execute opera-
tions on all paths instead. A third reason is the difficulty
of maintaining a susteined execution rate of several con-
ditional branches per cycle, to achieve a high degree of
performance in system code; in system code branches are
very frequent, so high branch throughput seems manda-
tory. The software and hardware techniques described
here should help to solve some of the problems listed
above.

The techniques outlined in this paper are inspired by
the new compilation techniques and architectural fea-
tures that have been incorporated in the compiler and
architecture for the IBM VLIW machine project at the
IBM T.J. Watson Research Center ([2, 1, 3]) This
project consists of the design of a parallelizing compiler
and an architecture (whose prototype is being built), for
extracting parallelism from extremely sequential, non-
numerical code. Qur compiler techniques can bring to-
gether in the same VLIW instruction independently ex-
ecutable operations and tests that may be separated by



many conditional nranch iginal code, or that
may belong to different iterations of a loop. The re-
sulting code can execute operations on all paths as soon
as their operands are ready if resources permit; regis-
ter renaming to mailntain execution on multiple paths
is managed at compile time. Resources are conserved
by stopping execution of the remaining operations on
a path, as soon as it is known that the path will not
be taken. Also, the compiler merges redundant com-
putations on multiple paths into a single computation,
to conserve resources further. Advanced memory dis-
ambiguation techniques (enhancements of those used in
the Bulldog compiler [5]) are used for determining if two
memory references can access the same location.

The thrust of the present paper is not a new compi-
lation technique for superscalars, but a mapping from
VLIW instructions to groups of independently exe-
cutable RISC/superscalar instructions, that, albeit sim-
ple, make these very aggressive parallelization techniques
that we heretofore thought to be applicable mainly to
VLIW’s, applicable to plain superscalar code as well, of-
fering the possibility of high speedups on superscalars.
We will describe the features of our project related to
superscalar machines below.

2 Overview of our VLIW Architecture

The superscalar architecture we are assuming is a ma-
chine where groups of regular RISC instructions are used
for abbreviating a VLIW instruction. To understand the
superscalar model, it is first necessary to explain the in-
struction semantics for our VLIW machine.

Our VLIW machine has multiple functional units all
of which share a register file and multiple condition code
registers that assume binary values (true or false). Tt
supports multiway branching and conditional execution.

The instructions of the machine have the form of a de-
cision tree (please refer to the example tree labeled L8 at
its root, given below). The tree is encoded in binary form
in the instruction word. At the terminal nodes of the
tree there are labels, which this instruction can branch
to. At each non-terminal node of the tree, there is a test
on a condition code register (the machine has multiple
condition code registers). On each directed edge of the
tree there can be zero or more three-register arithmetic
operations, or memory loads/stores. An instruction is
executed in a single machine cycle.! Conceptually, there
are two phases in the machine cycle: the path selection
phase and the execution phase.

At the path selection phase, the machine determines
a unique path from the root of the tree to a tip node of
the tree, based on the old values of the condition code
registers that were set in the previous instructions, in a
decision tree like fashion. If the test on a given node is

'If OP is an n cycle pipelined operation, it can be can
be represented in this single cycle paradigm as n single cycle
operations, one “r1 OP r2 — r3”, followed by n — 1 “delay
r3 — r3” operations. Delay operations do not take resources,
and have the semantics of a copy operation.

frue, the taken path branches to the ieft, otherwise the
taken path branches to the right. (This conceptually
sequential process is really done with very fast, parallel
hardware).

At the execution phase, only the three-register arith-
metic operations and loads/stores that are on the se-
lected path are executed, using the old values of the reg-
isters available from the previous instruction as operands
or storage addresses. (Even if one operation such as
T op y — z sets the source register z of another opera-
tion z op w — wu, simultaneous execution is possible since
z op w will use the old value of z available from the pre-
vious instruction). If more than one operation sets the
same destination register on the selected path, or stores
into the same memory byte, the operation closest to the
tip node determines the final value in the destination
register or memory byte. A load on the selected path
will read the memory before any stores are performed to
the same memory location.

Finally the results of the operations are written into
the register file, and control branches to the instruction
whose label is indicated at the tip node of the taken
branch of the current instruction. The next instruction
will observe the updated values of the registers, condition
codes and storage locations.

For the specific implementation, there will be a finite
limit on the number of distinct arithmetic operations,
loads/stores, and the number of branch target addresses
in a particular instruction. Otherwise, the shape of the
tree and the placement of operations on its edges can be
arbitrary. For a more detalled discussion on the archi-
tecture, and on how the seemingly complex instruction
semantics described here is implemented with a fast cy-
cle time, readers should refer to [2].

Now to exemplify how the tree instructions in our
VLIW paradigm can speed up sequential natured code,
consider the following inner loop taken from the zlyget-
value subroutine of SPEC Lisp Interpreter benchmark.
We write the sequential code in the assembly language of
a “generic” RISC machine with several general purpose
registers and several boolean condition code registers.
This RISC machine can execute three register arith-
metic operations, register-immediate arithmetic opera-
tions, compares, loads and stores using the base+index
or base+displacement addressing modes or the autoin-
crement variants of these addressing modes, and condi-
tional and unconditional branches. We assume that, to
prevent a pipeline stall, there must be at least one cycle
delay between a load and any operation using the result
register of that load, and at least one cycle delay between
a compare and a conditional branch using the condition
code set by the compare, regardless of how many instruc-
tions can be issued per cycle. The Intel i860(tm) has such
one cycle load-use and compare-branch delays, for exam-
ple. We will add these delays as explicit instructions to
the original sequential code as shown below, to make it
fit the single cycle paradigm of our VLIW compiler.



©nC Lisp Interpreter benchimark xlygetvalue
subroutine inner loop

Explanation of registers at entry to loop:
r8 = address of 1st element of linked list
8 = offset of cdr field

4 = offset of car field

r3 = address of item to match against

Purpose of loop: look for an element x of the list
with car(car(x)) equal to r3, and if found exit to
"found" with r9=car(x). Otherwise, if the end of
the list is reached, exit to '"endofchain"

loop:
load 8(r8)->r8 ;r8= cdr(ist) = address of 2nd
delay r8->r8 ;to represent load-use delay

(r8==0) -> cc0 ;cc0 = (2nd == NULL)

delay cc0-> ccO ;compare-branch delay

if ccO goto endofchain ;if 2nd=NULL go endofchain

load 4(r8)-> r9 ;r9 = car(2nd)

delay r9-> r9 ;load-use delay

load 4(r9)->ri10 ;r10 = car(car(2nd))

delay ri10->ri10 ;load-use delay

(r3==r10) -> ccl iccl = (r3 == car(car(2nd)))

delay ccl-> ccl ;compare-branch delay

if not ccl goto loop ;if (r3== car(car(2nd)))
;exit at "found"
;else goto loop with 2nd now
;replaced with 3rd etc.

found:

r9 is live here

endofchain:
no registers set in loop live here

We now show a few tree-instructions in our VLIW ar-
chitecture paradigm, which are the parallelized version
of the above loop. This VLIW code is a commented ver-
sion of the result that was obtained antomatically from
the sequential code above, by our VLIW parallelizing
compiler. To understand how the VLIW machine in-
structions work, and get a sense of what sort of paral-
lelization opportunities exist, we would suggest that the
reader verify that the parallel VLIW program (2 VLIW
cycles/iteration = 3.5 useful RISC instructions/cycle),
is semantically equivalent to the original sequential pro-
gram. This program fragment is probably one of the
more sequential natured fragments in the SPEC suite.

loop

|load 8(r8)->r8 ;(1) r8= cdr(ist) = address of 2nd
L1 ;"(1)" is the iteration number

L1

|delay r8->r8 ; idle for one cycle

L2

L2

| (r8==0)->cc0 ; (1) ccO0= (2nd==NULL)

| load 4(r8)->r9 ;(1) r9 = car(2nd)
| load 8(r8)->r8 ;(2) r8=cdr(2nd)=addr of 3rd
1.3

if ¢c0 ;(1) if 2nd==NULL goto endofchain
/ \

/ \ load 4(r9)->r10 ;(1) ri0=caar(2nd)
/ \ (r8==0)->cc0 ;(2) cc0=(3rd==NULL)
/ \ load 4(r8)->r9’ ;(2) r9’=car(3rd)
/ \ load 8(r8)->r8 ;(3) r8=cdr(3rd)

/ \ ;= addr of 4th

endofchain L5

| delay r10->ri10
| delay cc0->ccO
| delay r9’->r9’
| delay r8->r8

;idle for one cycle

L6
Lé
| (r3==r10)->cct ;(1) cc1=(r3==caar(2nd))
if cc0 ;(2) if 3rd==NULL goto endofchain’’
/ 0\
/ \ load 4(r9’)->r10 ;(2) ri10=caar(3rd)
/ \ (r8==0)->cc0 ;(3)cc0=(4th==NULL)
/ \ load 4(r8)->r9’’ ;(3) r9°’=car(4th)
/ \ load 8(r8)->r8 ;(4) r8=cdr(4th)
/ \ ; = addr of 5th
endofchain’’ L7

L

| delay ccl->ccl ;idle for one cycle
| delay r10->r10

| delay cc0->ccO

| delay r9°°->r9’’

|
L

delay r8->r8

Initially n=0
loop invariants here, for n=0,1,2,...

ccl = (r3 == car(car(n+2nd)) )

r10 = car(car(n+3rd))

cc0 = (address of n+4th elem == NULL)
r9 = car(n+2nd)

r9’> = car(n+3rd)

r9°° = car(n+4th)

r8 = address of n+5th element

r3 = parameter (sym) to match against

*/
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T gel 3410 1T r8

1 =caar 2nd exit
/ o\
/ \ (r3==r10)->ccl
/ \ ;(2) cctl= (r3==caar 3rd)
found if cc0  ;(3) if 4th=NULL exit
/ \
r9’->r9 / \ r9’->r9 ;(overhead)
/ \ ;(2) r9=car(n+3rd)
/ \' r9’°°->r9’ ;(overhead)
endofchain’’ \ ;(3) r9’=car (n+4th)
\ load 4(r9’’)->r10
\ ;(3)rt0=caar(n+4th))
\ (r8==0)->ccO
\ ;(4) ccO=(n+5th==NULL)
\ load 4(r8)->r9’’
\ ;(4) r9’’=car(n+5th)
\ load 8(r8)->r8
\ ;(5) r8=cdr(n+5th)
L7 ;=addr(n+6th)
endofchain’’ ;e.g. when coming here from L8,
| delay cci->ccl ;addr(n+4th) is known to be nil,
endofchain’ ;but we still need to check
endofchain’ ;if (caar(n+3rd)==r3)
| ;1s true, and if so
if ced ;g0 to found with r9=car(n+3rd)
/ \
/ \
found endofchain

Different degrees of parallelization opportunities exist
for different sequential natured fragments of the SPEC
benchmarks, for example the inner loop of subroutine
cmppt of the SPEC egniott benchmark (13 instructions
with the generic RISC we defined above) can be executed
at 1 cycle/iteration on a VLIW with sufficient resources.
More extensive experiments on the SPEC benchmarks
and other applications will provide a more definitive an-
swer regarding the degree of the available parallelism,
although these preliminary results are very promising.

3 A superscalar machine based on our
VLIW architecture

We will now describe a model of a hypothetical super-
scalar machine derived from our VLIW architecture.

The proposed superscalar machine executes a group
of adjacent, independent RISC instructions every cycle.
The RISC’s instruction set is the instruction set of the
hypothetical sequential machine fed into our VLIW com-
piler. The group of RISC instructions corresponding to a
VLIW instruction is obtained by breaking up the VLIW
instruction into a sequence of serial RISC instructions
that perform an equivalent transformation on memory
and registers. We call such a group of independent RISC
instructions, that are the translation of a VLIW instruc-
tion, a “VLIW group.”

Sometimes it is possible to convert the operations and
tests in a VLIW tree to the corresponding group of in-
dependent RISC instructions in a straightforward way,

crmitting the s
In a pre-order traverss ;
and get the same effect as the VL J\\ instruction wou
this case is illust r@ted by the VLIW instructions in ’he
SPEC Lisp [nterpreter example. But such a translation
is not correct in general. Smce a path on the VLIW
Instruction tree may have operations such as x+4—x,
followed by x+8— y (one operation uses the old value
of a register set by the other) these operations have to
be reordered in the serial code, by placing an operation
or conditional jump that uses the old value of a register
before one that sets the same register to a new value.

rom the roc

One simple translation method from a VLIW tree to
RISC code, is to choose an operation or test from the
tree that, in RISC code, can be executed before all the
other operations and tests in the tree without violating
the original VLIW semantics, emit the RISC instruc-
tion corresponding to this operation or test, delete all of
its occurrences from the tree, and then recursively emit
code in the same way for the resulting tree(s). In the
case of a test node, deleting it from the tree results in
two trees, one which behaves as if the test were true,
and another which behaves as if the test were false; The
“branch taken” target of the RISC conditional branch
corresponding to the test node will be the RISC code
generated by the former tree, and the “branch untaken”
target will be the RISC code generated by the latter tree.
For empty trees that just branch to the next VLIW tree
(encountered when all operations and tests are deleted),
a RISC unconditional branch will be emitted, unless the
branch target is the immediately following RISC instruc-
tion. Assume the tree has first been re-arranged, so that
multiple assignments to a register on the same tree path
have been eliminated. Then, an operation or test op in
the tree can be executed in RISC code before all other
operations and tests in the tree without violating the
original VLIW tree semantics, if and only if the following
are all satisfied: if op has a destination register, then this
register is not used as a source by any other operation or
test in the tree, and on every path of the tree from the
root to a tip node, this register is either set on the path,
or is not live at the target VLIW instruction of the path;
if op is a store, it occurs as the first store on every path
of the tree (we respect order of stores on each tree path),
and there are no loads in the tree that could access the
same location. In some cases only circularly dependent
operations such as x:=y and y:=x, which exchange the
values of x and y in the VLIW code, will remain in a
tree; there is no possible order to execute these opera-
tions in RISC code, and get the same effect as the VLIW
instruction; so no operation can be chosen by the above
criterion. In this case, a new temporary destination reg-
ister t has to be introduced in the corresponding serial
RISC code to break the dependence cycle (giving the
serial code t:=y, y:=x, x:=t, in the above example). If
temporaries were thus introduced, it may be useful to do
some further local compaction to attempt to recover the
lost parallelism (otherwise, e.g. in the above example,
t:=y and x:=t could have to be executed sequentially by



{ie superscalar hardware, depen . the design ).

For a superscalar with small rescurces, say with 1-2
functional units and 1 branch unit, the technique sug-
gested above may be easy to implement as the natural
hardware dispatch mechanism. That is, the superscalar
may merely execute the next group of adjacent indepen-
dent RISC instructions every cycle, or at least we can
usefully model it in the compiler as if it did so, even if
the superscalar has a more complex dispatch mechanism
that can do more. To benefit from the compiler capabil-
ities, the original assembly code of the RISC can be first
converted to “sequential” VLIW code with appropriate
representation of the pipeline delays, with one operation
per VLIW tree instruction; then parallelized by VLIW
techniques according to the finite resource constraints of
the machine; and then turned back to serial assembly
code of the original superscalar (the delay 1 — r op-
erations are deleted at this stage). Since pipeline delay
cycles due to load-use, compare-branch and other depen-
dences have been explicitly represented to the compiler
as VLIW instructions to fill, operations will be moved
across basic block and loop iteration boundaries to oc-
cupy these previously idle delay cycles, thus yielding bet-
ter performance than the original sequential code. This
global scheduling approach is better than some previous
approaches that examined mainly a single basic block at
a time for reordering instructions, on pipelined unipro-
cessors (e.g. [7]).

The hardware implementation methods that could be
used to execute a larger group of independent operations
and conditional jumps per cycle on a superscalar, are
beyond the scope of this paper; we hope to discuss these
in a future paper.

For the sake of showing how the translation from the
VLIW tree-instructions to RISC code is done, we give
here the serialized RISC versions of each VLIW instruc-
tion in the Lisp Interpreter example above. The delay
operations have been deleted. Horizontal lines indicate
VLIW group boundaries.

Loop:

load 8(r8)->r8 ;(1) r8=addr of 2nd
(r8==0)->cc0 ;(1) cc0= (2nd==NULL)

load 4(r8)->r9 ;(1) r9 = car(2nd)

load 8(r8)->r8 ;(2) r8 = cdr(2nd) = addr of 3rd
if ccO0 goto endofchain ; (1) if 2nd==NULL exit
load 4(r9)->r10 ;(1) r10 = car(car(2nd))
(r8==0)->cco ;(2) ccO = (3rd == NULL)

load 4(r8)->r9’ ;(2) r9’= car(3rd)

load 8(r8)->r8 ;(3) r8 = cdr(3rd) = addr of 4th
(r3==r10)->ccl ;(1) ccl= (r3 == car(car(2nd)))
if cc0 goto endofchain’;(2) if 3rd==NULL exit
load 4(r9°)->r10 ;(2) r10 = car(car(3rd))
(r8==0)->cc0 ;(3) cc0 = (addr of 4th== NULL)
load 4(r8)->r9’’ ;(3) 1r9’’= car(4th)

load 8(r8)->r8 ;(4) r8=cdr(4th)=addr of 5th

T 1 goto found

r3==r10)->ccl

f not cc0 goto L8.1

95=>F9

goto endofchain’

L8.1:

r9°->1r9 ;(2) (overhead) r9=car(n+3rd)
r9°°->r9’ ;(3) (overhead) r9°’=car (n+4th)
load 4(r9’°)->r10 ;(3) ri0=car(car(n+4th))
(r8==0)->cc0 ;(4) ccO=(addr of n+5th == NULL)
load 4(r8)->r9’’ ;(4)r9’’=car(n+5th)

load 8(r8)->r8 ;(5) r8=cdr(n+5th)

goto L8
found: ;r9 live here
endofchain’: jwhen coming here from L8,

;n+4th is nil but still need
if ccl goto found ;to check if r3==car(n+3rd)
endofchain:

4 The parallelization algorithm

The task of parallelizing for the superscalar machine
(with a matching VLIW machine) is then to start with
the sequential code, parallelize it for the correspond-
ing VLIW with the same number of resources, and
turn the resulting compacted VLIW trees back into
sequential RISC instructions. There are several tech-
niques for compacting VLIW code, including [1, 3, 4,
9] and [5]. We will describe a version of the enhanced
pipeline scheduling technique ([4]) used in our VLIW
compiler briefly, details may be found in other papers
mentioned above.

The input to the enhanced pipeline scheduling algo-
rithm is a list of the tree-instructions of a loop, sorted
in depth first order.? The input trees contain only one
arithmetic operation or one load /store or one conditional
branch, i.e. the input is sequential code. The algorithm
proceeds by constructing the software pipelined schedule
stage by stage. At each stage, a data structure called
“fence” contains the set of VLIW instructions that will
be filled with operations during this stage. A synopsis of
the algorithm is as follows (the term “instruction” refers
to VLIW instruction here):

place the entry instruction of the loop
in "fence'. Mark each operation and test in
the loop as belonging to iteration 1.

while there are still operations and tests from
iteration 1, and the fence is not empty do

for each instruction n in the fence:
Move operations and conditional jumps that are
below n in the list to n (subject to finite
resource constraints).
mark n "filled"

end for

2The algorithm is applied to innermost loops first, and
then to the next level of outer loops, and eventually to the
entire program, after the strongly connected part of each
pipelined inner loop is represented as an atomic VLIW in-
struction at the next level outer loop.



rewfence := the successors of members n of the
fence that are below n in the list and that

are not yet "filled"

Remove fence instructions from the list and
append to the bottom of the list. Increment
the iteration numbers of cperations and tests
in the fence by 1.

fence := newfence
end while

The actual upward motion of the operations can be made
with a variety of acyclic code compaction techniques, e.g.
([3]). The above algorithm will terminate if operations
in iteration n are chosen before operations belonging to
a later iteration n+ 1, n+2,..., since that way eventually
no operations will remain from iteration 1. The reader
is encouraged to attempt to reconstruct the parallelized
version of the Lisp Interpreter loop starting from the
algorithm sketch given here.

5 On exceptions caused by speculative
operations

When, in the parallelized version of a program, an op-
eration is executed earlier than a conditional branch on
which it was control dependent ([6]) in the original code,
we call it a speculaiive operation. A VLIW compiler may
aggressively move an operation above a conditional jump
which preceded it in the original code, and determined
whether it would really be executed; thus, in the par-
allelized code, this speculative operation may execute
many cycles before the conditional jump that originally
preceded it. The intent here is to execute operations
before even knowing the outcome of conditional jumps
that precede them, in order to gain some speedup just
in case the program decides to take a path that includes
these operations. Some operations that may cause fa-
tal errors (such as accessing a very high virtual mem-
ory address not available to the program, or causing an
arithmetic overflow) will also be moved by the compiler
above conditional jumps that originally preceded them.
The problem in this case is what the machine and operat-
ing system should do, when such a speculative operation
causes an exception. The program should not necessarily
be aborted, since it is not even known whether the path
containing the operation would really be taken in the
original, un-parallelized program. Speculative code mo-
tion can be very important, for example no improvement
results in the Lisp Interpreter code above, unless loads
are moved above conditional jumps. Note that stores are
never speculative.

For existing machines where the instruction set cannot
be changed, there is not much to do except to fully debug
the program in the unoptimized mode, and then, in the
parallelized code, try to prevent or ignore any fatal er-
rors due to speculative operations belonging to untaken
paths, but process any nonfatal exceptions, such as page
faults, as usual. Fatal memory exceptions due to spec-
ulative loads on untaken paths (that could occur, if for

example a Lisp atom vari resing as a list and its
<

‘car” field is loaded by a spsculative operation belore
even executing the conditional jump that tests if it is
an atom, accessing a random virtual address beyond the
allowable range), can be treated by either providing an
extra read only page at the location requested by the
load, to hopefully prevent occurrence of the same error
again in a loop, or by efficiently ignoring the fatal error
at the first level interrupt handler. Note that a load will
be executed speculatively in the parallelized code and
will cause overhead by accessing an extra page not refer-
enced by the original program, only if all of the following
are true: l-computing the base register of the load in the
parallel schedule takes shorter than computing the con-
dition code which determines whether the load will really
be executed in the original code; 2-there are sufficiently
large machine resources, or a sufficiently small degree of
parallelism, for the compiler to choose this speculative
load over other operations, during those cycles where
the load address is ready, but the condition code is not
yet ready (nonspeculative operations will be preferred to
speculative ones by the compiler when there is a schedul-
ing choice); 3-the original program takes a path where
this load is not executed; 4-the original program never
references the page addressed by the speculative load (so
the page is either out of bounds, or bringing this page in
is definitely useless). The solution then could be to allow
a possibly larger working set for an optimized program,
along with the special handling of fatal errors. Measure-
ments of the various factors on an actual implementation
will determine the tradeoffs.

Code with authority to do memory mapped I/0O loads
with side effects, cannot make use of these speculative
code motions, since speculative loads coming from un-
taken paths of the original program may in general ac-
cess unpredictable addresses. Thus, although our pro-
posal for using the VLIW compiler techniques for an
existing machine has the potential to improve perfor-
mance of the majority of operating system utilities, user
applications and kernel code; in order to remain safe re-
garding software compatibility, such aggressive compiler
optimizations would best be implemented as a new, op-
tional high optimization level in the compilers, and the
operating system would have to be alerted to handle the
fatal exceptions in a way that differs from the default,
by a system call at the beginning of each program with
any speculative operations.

If a superscalar machine is being designed {from
scratch, a fairly comprehensive support for speculative
operations can be achieved by mimicking what is in the
IBM VLIW machine ([2]). The techniques of the IBM
VLIW machine, described below, are very inexpensive to
implement, and provide a usable degree of error check-
ing.

In our VLIW architecture, every operation has a spec-
wlative and a nonspeculative version (encoded by an ex-
tra bit in the opcodes). The compiler can dgtermine
which operations become speculative, when it moves an
operation above a conditional jump. The registers have



e epiicn iag (saved and restorec
ACCrOss pr switcnes ). When a speculative operation
causes an error in the “fatal error” class, the machine
does not take an interrupt, only the 33rd bit of the result
register is set. When this result is used as an operand in
subsequent speculative operations the 33rd bit is prop-
agated to the results of these operations. (The address
of the original exception-causing operation can also be
saved in the remaining 32 bits of the result, and prop-
agated like the 33rd bit; but when both operands of a
speculative operation have the 33rd bit set, address in-
formation in only one operand will be propagated.) If
one of the original paths which contained the specula-
tive operation is finally taken, and the speculative op-
eration result with the 33rd bit=1 is finally used by a
nonspeculative operation, an interrupt will occur. The
information in the operand which had the exception tag
bit set, can identify the original operation which caused
the interrupt, and hence at least one possible line in the
source program where this operation could have come
{from, assuming compiler tables were maintained. If the
path that originally contained the speculative operation
is not taken, nothing happens. The speculative opera-
tion then serves merely as an unnecessary computation
afforded by the large resources of the machine, that does
not affect the final outcome of the program.

Some exceptions (like translation exceptions, or
operand alignment interrupts, or IEEE floating point ex-
ceptions) are not necessarily fatal. These cannot be ig-
nored even on exceptions due to speculative operations.
A simple technique to use with the exception tag and
speculative opcode architectural features, is to process
the interrupt as usual anyway if it is nonfatal (e.g. give
the program the requested page on a page fault, handle
the alignment error), and to resume the program with
a result with the 33rd bit set, if the exception is found
to be fatal, but the operation causing it is speculative.
The program can be aborted as usual, on a fatal excep-
tion caused by a nonspeculative operation. Some extra
exceptions, that never occurred in the original sequen-
tial program, may also need to be handled with this ap-
proach, when a number of conditions (like those listed
above for memory exceptions) are simultaneously true.

Since speculative loads on untaken paths may ac-
cess unpredictable addresses in general, speculative loads
that could cause side effects by touching I/O space ac-
cidentally must be ignored by the hardware (hardware
can recognize that a load is speculative from the op-
code). I/O space loads with possible side effects can
only be nonspeculative, assuming the I/O space variables
are declared in a special way in the high level language
program, and the compiler inhibits the optimization of
the instructions that access these. This approach allows
a machine with the exception tag/speculative opcodes
feature to perform uninhibited memory mapped I/O as
well.

6 Conclusions

We have described a method to apply the compiler algo-
rithms for achieving paralellism on VLIW machines, to
superscalar architectures. We have described the archi-
tectural and operating system support, namely the sup-
port for speculative loads, to make maximal use of the
resources of a superscalar machine. Although a more ex-
tensive study is needed, our approach appears promising
for making better use of superscalar architectures.
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APPENDIX: An application of our VLIW compiler techniques
on the IBM RS/6000

(taken from the foils we presented at ICCD-1990)
Search a linked 1ist for an element matching given key.

Original code:

r3= address of list

r4= key to be compared against

r3= return value (null or address of matching record)

Toop:

] r0,x(r3)
cmp  cr@,r0,r4d
beq crO,ret

] r3,1ink(r3)
cmpi crl,r3,0
bne crl,loop

ret: vreturn r3

WM O MN

Performance: 9 cycles/iteration

RS/6000 pipeline delays (IBM J. of R&D, January 1990):

* load into r - use r, delay is 1 cycle

* compare-taken cond. branch delay is 3 cycles (3 — k cycles, if there
are k instr. between compare and branch)

* compare-untaken cond. branch delay is 0 cycles (but an
unconditional branch following the untaken branch may then incur
extra delay).




A previous technique for reducing branch delays on RS/6000

(Golumbic and Rainish, IBM J. of R&D, January 1990)

Moves a few instructions from the top of the loop to the bottom, to cover
compare-taken branch delay.

loop:
] ro,x{(r3)
cmp crO,rO,rd
loopl:

beq cr0O,ret 0
] r3,1ink(r3) 1
cmpi crl,r3,0 2
beq crl,ret 0
] ro,x(r3) 1
cmp cr@,rO,rd 2
b 1oopl 0-1

ret: return r3

6-7 cycles/iteration

Load-use delays are still not covered
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*

Compilation Stages for VLIW approach

Unroll/unwind inner loops

Rename registers

Insert dummy delay operations to represent pipeline delays
Convert to VLIW code

VLIW compaction and software pipelining (e.g. enhanced pipeline
scheduling, Ebcioglu-Nakatani 1989)

Re-allocate registers

Convert back to serial code
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Compilation Stages for VLIW approach

Code after unrolling, renaming, delay insertion:
(State just before global "VLIW" scheduling)
Each cycle is a VLIW instruction to fil]

Toop: 1 B, %IT3)

<l delay on r0'> /* E.g: 1 r3',1ink(r3) moves here */

cmp cr@',ro0',r4
<3 delays on cr@'>
beq cr0',ret

] r3',1ink(r3)
<l delay on r3'>
cmpi crl',r3',0

<3 delays on crl'>
beq crl',ret$

] Y xlF3Y )
<delay>

cmp  cr@'',r0'',rd
<3 delays>

beq cr@'',ret$

] r3t',1ink(r3")
<delay>

cmpi crl'',r3'",0
<3 delays>

beq crl'',ret$$

11



ret:
ret$:

ret$s:

Compilation Stages for VLIW approach

] ro,x(r3'")
<delay>
cmp cr@,ro,r4
<3 delays>
beq cr0,ret$$
] r3,link(r3'")
<delay>
cmpi ¢crl,r3,0
<3 delays>
bne c¢rl,loop
return r3
Ir  r3,r3!
b ret
e 7o, rE3%!?
b ret

12



Final result of VLIW compilation techniques

loop: 1 ro,x(r3)
] ré,link(r3)
cmp crO,r0,rd

beq cr0,ret$$
cmp  crO,r0,rd
bne crl,loopl
ret: return r3
ret$: 1r r3,r6

loopl: cmpi «crl,r6,0 1
] ro,x(r6) 1
] r5,1ink(r6) 1
beq crO,ret 0
cmp  cr0,r0,rd 1
beq crl,ret$ 0
cmpi crl,r5,0 1
] ro,x(r5) 1
] r3,1ink(r5) 1
beq cro,ret$ 0
cmp crO,r0,rd 1
beq crl,ret$$ 0
cmpi  crl,r3,0 1
] ro,x(r3) 1
] r6,link(r3) 1

0
1
0

b ret
ret$$: Ir  r3,r5
b ret

(12 cycles/3 iter. = 2.25X better than original version.
At least 1.5X better than Golumbic-Rainish version.)
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