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ABSTRACT: This repon describes an expen system called CHORAL for harmonizatioo of four-parr
cborales in the style of Johann Sebastiao Baclr. Tlre system conrairu abour 350 rules. writr,en in a
form of firsr order predicate calculus. The rules represent nrusical knowledge from nrultiple view-
poins of the chorale. such as tbe chord skeleton, thc mclodic lioes of rbe individual pars, and
Schenkerian voice leading within tbe descant anC bass. The program harnronizes chorale metodies
using a SenenE-and-test ntethod with intelligenr backtracking. A substantial nuntber of heurisrics
are used for biasing the searclr toward rnusical srrlutions. The CFIORAL knorvtedge base provides
for style-specific modulations. cadence pattenr, comple: encounlens of simultaneous incssential
notes; and intposes difficult constrainB for maiooining metodic interest in the inner voices. En-
cottraging results lrave been obtained, and nunrerous output exanrples are given in tlre reprrru

To cope with tltc large contputational needs of tonal music generarion, BSL. a nerv and efficient logic
prograntming langtrage fundantentally diffcrent from Protog, was designed to implenrenr ttte
CHORAL systenr. BSL is an Algot-class nondeternrinistic language with a single assignntenr re-
striction; but there is a simple mapping that uanstates a BSL progranr to a firsr order fornrula. so rhar
each terlttinating exectttion of a BSL progranl c'ithout free variabtes amounB to a proof of rtte cor-
responding first order sentence. A dc Bakker styte fornral senranticS was providett for a subscr of
BSL, and a soundness rcsult was obtained rbat retates BSL and first order logic. The language has
been intplententeC via a contpiler that transtares '}SL prograns into vcry cfficient backtracking pro-
grans in C.
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C}TAPTER I

INTRODUCTION

l.l Introduction

An increasingly importaot ooDcept in Artificial lotelligence research today is the "expert system,"
whicb is a complex prograro written for a highly specialized application and wbich uses a buge amount
of domaio specific information [Hayes-Roth, Wat€rmaD, and l-enat 83]. Some classic examples are
tbe DENDRAL program [Bucbanan, Feigenbaum and Sutberland 69, Bucbanan and Feigeobaum 78]
which reconstrucb tbe chemical fornrula of an organic compound from the mass spectrometry data
obtaioed from a sample of tbe compound, and the lvfYCIN lSbortcliffe 76, Bucbaoan aod Sboncliffe
8a] and TEIRESIAS [Davis and l-enar 82] prograrns which perform medical diagnosis of infectious
diseases aod prescribe antibiotics. Tbe task performed by an expen system is typically a Dot too
uivial mental task whicb bas some practicat rse (as distinct from some of the earlier A.l. research
whicb coocentmted on tbe meotal proc€sses involved in moviog toy blocks). This mental task is
perbaps routi-oely performed by a buman oompeteot in tbe area, bowever, it may not be easy for tbe
same buman expert to translare his or ber mental process to a crlmputer program: often tbe ooDveD-
tional approacb of stating the problem and writing a sbort dgorithm to solve it does oot apply.

Un[ke some early ambitious effors in A.I., whicb aimed directly at obtaining true machine intelli-
gence (e.g. [Fogel, Walsb and Owens 66]), expen systems tend to be merely a modest scientific re-
searcb toward more effective computational metbods for solving complex problems. Some intrinsic
advantages of an expert system tbat make it appear "intelligent" are perhaps of a brute-force nature.
Firsrly, tbe knowledge in tbe program is sizable in amount and acccssible only to competent profes-
sionals in rbe field There is a libeny b tcll tbe program cvery piece of knowledge relevant to its
purpose. Secondly, the program cao occasionally rely on bnrte-force cooputing power, wbere a hu-
man is also conscrously faced witb a meotal task of constraint resolution, as is tbe case witb, e.g., tbe
cxhaustive searcb problem described in [Stcfik 78]. Tbirdly, due to tbe very specialized nature of tbe
field, there is a chance that tbe level of human competition that an exp€n system will facc will not
neccssarily be comparable to tbe level of human competition tbat, for example, a general tbeorem
proving progr:rm will encounter. Brutc-force or Dot, expen systems seem to be the only field of A.I.
that bas bad any solid practical promise so far. In fact" in some cases, tbey bave been reponed to be
bettcr thao tbeir buman couDterpans (e.g. fFeigenbaum 79]).

In addition to tbe expert systems aimed at commercial applications [e.g. Weiss et al. 82, Bennett and
Hollander 81, Davis et al. 811, tbere bas been at teast oDe attempt to wrire erpert systenr tbat simu-
late more lofty and less utilitarian intelligent activity. We are referring to l-enat's A.M. system [Lrnat
76, Lenat 82], which discovers interesting conjectures in elementary matbematics, usiDg an ertensive
base of practical recommendations, invented by L-enat" to searcb for such interesting conjectures.
Our researcb is based on an expert system in tbis latter, non-commercial category: we bave designed
aD expen syst€m, called CHORAL, for barmonizing four voice cborales in tbe style of Jobann
Sebastian Bacb.2 Tbe Bacb cborale style is described in the CHORAL system via approximately 350

A chorale is : shon rnusical piccc o bc sung by a choir consisting of mcn's end qomcn's voices. There rrc four inde-
pcndent parrs (mclodics) in a choralc, s'hich are sung simultancously. Thc bass and tcnor pans arc sung by men, and
dte alto and soprano pans ate sung by *omcn. Thc soprano pan is thc main choralc mclody, and the rtrnaining parls
scfle as accompanirnenr. Harmonizalion is. in thls contcxt, thc process of composing the bass, tenor. and alto parts.
wien the sopnrno part (the main choralc melody) is givcn. J.S. Bach has produccd over 300 harmonizations of choraie
nrclodics lTcrry'6aJ.



rules written in a form of first order predicate calculus. Tbe nrles were found from empirical obser-
vation of the cbordes, personal intuitions, and traditiond barrrony textbooks.

1.2 Sate of the art

But due to tbe higbty controversial nature of tbe subject of muic composed by computers, it is ap-
propriate to first summarize the cuneDt uends in computer compositioo and music analysis, before
going on to furtber dstails of our system, so that our ratber unuuat staDce in tbe field of computer
mrcic n'ill be better undentood

At prese nt, music composed by ootrtputer programs is ofien based on a simple fonnalism, for example,
in tbe form of random generation of pitcbes and durations of ootes with elegant stochastic techniques
[Xenakis 71, Hiller 59, 8l], terse aod powerful formal grarnmars [Jones 8l], or extensions of funda-
menul seriat composition procedwes [l-aske 8lJ. Tbe eooDomy aod elegance of tbe formal charac-
terization, and perbaps tbe very propeny of being generated by a computer, zue often pan of tbe
aestbetic that applies to tbese oomputer music styles. This type of aestbetic is radicaUy different from
traditional aesthetics in music, but is certainly not in tbe teast less respectable. On tbe otber band,
tradidonal music, and most of modern Eusic, wbicb are usually composed witbout a computer, rarely
permit economical cbaracterizations. ln tbe uaditional style, tbe basic training in barmony, strict
counterpoint fugue, and orcbestration tbat the composer has to go througb before eveu beginning to
compose, already imposes a c€rtain minimal complexity on the :rmount of knowledge required to
characterize tbe style. Also, many will agree that a similar complexity can be observed in the works
of modern "Doo{omputer" composers like Karheinz Stockbausen, Pierre Boulez, Gyrirgi Ligeti, Jan
Rychlik, or Steve Reicb (his later compositions). It seems tbat Eusical composition is ordinarily a
bard mentat task requiriog a subsrantial amount of knowledge, and aoy serious altempt to simulate
"noo-computer" Eusic composition on tbe computer will bave to face tbe task of constructing a
formal model of considerable complexity, perbaps bordering tbe inuactable. [n fact, a formal cbar-
acterization of even a style like tbat of Bacb cborales, already borders tbe intractable, si-oce an
unexpectedty large amount of knowledge underlies tbe apparently simple and homogeneous cborales.
Tbe previous attempts at generating Bacb-style cborales througb a computer program were eitber
very restricted in scope, or were not sufficiently concerned witb output quality.3

As for music analysis, as it stands today, we should Dote tbat it tends to conc€ntrate oD ratber se-
lective propenies of the pieces tbat are subjected to analysis. For example, an analysis of tbree
Byzantine motets composed by Dufay in tbe fifteentb ceDtury uncovers tbe surprising fact rhat tbe
ratio of tbe leogtbs of certain structural suMivisions of tbe motets approximately equals tbe golden
section [Sandresky 8l]. Tbere are also scientilically oriented approacbes ro analysis. A relatively
recent article reveals tbe fact tbat tbe dissonances (measured in a precise physical way) of tbe cbords
in crrtain Bacb cborales are log-normally distributed! [Knopoff and Hutchinson 8l]. Clearly, tbe
assessed properties of tbe music in sucb analyses are fat from characterizing tbe style, i.e. tbere exist
many "pieces" tbat bave all the mentiooed properties, but have no relationship at dl n'ith tbe style
under analysis. Cbaracarizadon of tbe style is obviously Dot tbe analyst's intention; a typical analysis
often capitalizes on tbe abstruseness and elegance of tbe propenies tbat are .liscovered. ln fact, one
woujd think tbat tbe donn to earth dstails of bow individual notes follow eacb otber would be too

[Baroni and Jacoboni ?3, 75] rvponcd a program that composed the first two phnses of choralc mclodics in thc major
modc. Thcir program uscd a random, non-bac\tracking scarch rcchriquc for finding nrclodies satisfying 56 absolutc
rulcs, that had been developcd through an cxtcnsive study of a cotpls of chorzle mclodics. Thc program succceded in
gencnringsomeresu.l tsinthcrightepproximatcstl ' tc. [Scgrc8l]rzsanattcmptlohavcacomputcrpnog:lmenurneErtc
dl possiblc droralcs using e databasc of cramples as a guide (outpur cramples q'ere not givcn). A survcl' anicle by
[Hillcr 70] rncnlions an carly progrilm by D.G. Champcrpornc for generating and harmonizing Victorian h]'mas (q hich
can pcrhaps bc coruidcrrd sirnilar to thc chorales in difficulty). but no publishcd account of this program cxists ac.ording
!o our prcscnt kno*'lcdgc, A reccnr papcr [Thomas 85] dcscribcs an ongoing four-pan harmonizarion project imp)e-
unentcd qrit}t convcntional prograrnnrhg techniques at Carnegic-McUon University, that uses backrracking and heuristics
similar to oun, but *ithin a non-Bachian, strcamlincd framewor\ lhat alJos's vcry fer' possibiliries for inessential noles.
Rule-based cxpcn s)'sretn approaches to chorale harrnonization havs 115q bccn rcponcd reccntly lSteels 86, Lisch]a and
Gisgen 86]. but thesc proics are still in a vcry early stage to commcnl upon.



uninteresting to mention in an aoalysis. But are all the details that are left out uninteresting? A de-
sirable alternative to tbe selective analysis method would be to come up with a precise cbaracteriza-
tion, or at least a reasonable approximation, of a superset of the pieces to be analyzed, by writing a
computer program that generates pieces in that supersel Our present research corsLitutes, in fact, a
modest preliminary step in this direction.

We understaod that tbe typical educated musician may be reluctant about such a radically different
approach to analysis, because of tbe possibility that a computer program may very well generate
gibberisb instead of music. But this is not a thing to fear, in fact it is good: In an interactive envi-
ronment u'itb an expert system program, erroneous computer output can be extreurely valuable to tbe
alert analyst, for pinpointing tbe oversighs and shortcomings in his or ber formal description of the
style under analysis. However, it is necessary to point out that there is indeed a pitfall of a different
kind iD tbis proposed alternative, whicb could make it appear unscholarly. Because we bardly have
a way of telling wbat exactly tbe composer would have written, it is possible for tbe analyst to intro-
duce personal idiosyncrasies by the rules and preferences inserted in the program (althougb one could
in principle strive to avoid these). Nevertheless, we still believe it is worthwNle o pursue this ap-
proach, because of tbe acuity of knowledge necessitated by the task of programming a machine to
compose will probably contribute more to understanding and erplaining a style than the existing
analysis methds which concentrate on selective features, alrhougb, by tbeir passive nature, tbey do
have tbe safety of not interfering with a master's music.

1.3 Schenkefs work

Almost atl analysis techniques are selective to a certain extent, but some selective analysis metbods
are capable of capturing a more profound structure in muic, unlike otbers, whicb capitalize on the
mere elegance of isolated features. ln fact, our research interests were not only in chorale style syn-
thesis, but also in the autonrared analysis and synthesis of tbe hierarchical voice leading structure of
cborales. For tbe latter purpose, we allowed ourselves to be influenced by a most far-reacbing re-
search effort in the music analysis field: the Scbenkerian analysis technique. Heinrich Schenker
[1868-1935] devoted his lifetime to tbe analysis of the music of composers like J.S. Bacb, Beethoven,
Mozart" Brahms, Cbopin, Haydn, Handel, and Schuberr His researcb culminated in his final book
called "Free Composition (Der fnie Sae)" [Scbenker ?9J. The distinctive feature of Schenkerian
analysis, which is currently considered to be the deepest method of analyzing traditional music, is that
tbe analysis invariably reduces every given musical piece to a fixed sequence of three, five, or eight
notes (accompanied by a bass), called tbe Ursatz, or fundamental structure, througb a process rougbly
similar to parsing using a fornral gnillmar.

Because Scbenker is very inexplicit about tbe bow tbe analyses are derived from the music (be states
that constructing analyses requires creative powers and does not elaborate on any practical recornDl-
endations for doing so), it was necessary to devise a set of precise rewriting rules to approximate a
subset of Scbenkerian analysis theory that was sufficient for analyzing Bach cborales. After empirical
investigations on lbe Schenkerian analyses of a representative corpus of chorales, we devised a set
of formal rewritiog rules that start out with a starting pattern (similar to a Scbenkerian fuodamental
structure) and produce a cborale-like melody and bass when tbe rules bave been applied. To exenr-
plify the analytic capabilities of our formal grammar, we are providing a sequence of rewriting rule
applications tbat generate the descant line of tbe chorale Jesu, meine Frande ([Terry 64], no. 210) in
figure l.l, followed by a complete parsing of this cborale transcribed into a slur-and-notehead nota-
tion, similar to tbe analytic graphs of Schenker (tbe details of our theory will be exposed in chapter
3). Our initial research in tbis area was spurred by tbe very exciting work of [I-erdahl and Jackendoff
77, 83J, and by fRoads 78]. The previous research effors in this field were essentially computer
verifications of a Schenker-like formalism applied to specific works, ratber than attempts to autornate
the cognitive reasoning behind the steps of an analysis [Srnoliar 80, Snell 79, Kassler 75].
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(s d5-26 e5-2t) - 
(n ba-2?)(n cS-2t)

(s.5-2t d5-29) - 
(o d5-29)

(s d5-29 ct3-30) 
- 

(n ct5-30)
(s ct5-30 b{-31) - 

(n ba-31)
(3 M-31 ba-32) - 

(n M-32)
(s M-32 b{-33) 

- 
(n b,a-33)

(b b4-33 cl-37) - 
(s M-33 .4-3aXs t4-3{ ga-33)(s g4-35 tta-36)

(sffa-35 aa-37)
(s ba-33 14-31) - 

(o e4-34)
(s rr-34 t{-35) - 

(o C{-35)
(s 94-35 f*a-35) - 

(r ff,a-36)
(s fi4-36 aa-3?) 

- 
(o oa-37)

Fi$se l.l: hoductions for gencrating the descant line of chorale no. 210

1.4 The CHORAL sysem

We will Dow give a brief overview of CHORAL, our Bach cborale program.

Our program's purpose is to barmonize a given cborale melody, and provide a Schenker-style hierar-
chical voice leading analysis for tbe cborale. Tbe CHORAL system is essentially a producrion rule
based generate-and-test procedure lstefik 78], where tbe production rules, in rhis case, are imple-
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mented as formulas of a fornn of first order predicate cdculus. Tbe predicate calculus representation
was adopted because it constitutcs aD easy, precise, and stnrctured method of maki.ng @Dcrete as-
senions about music. BSL, a logic programming language fundamentally different from Prolog
[Kowalsti 79J, was developed to implement tbe CHORAL system.

t.4.t The representedon of ntsicel knowledge

From tbe knowledge representation point of view, one of tbe problems investigated in the present
report is tbe implementation of multiple iewpoints. Tbere are several different viewpoins from which
ttre rules observe a panially completed chorale, such as tbe cbord skeleton, tbe individual melodic
lines of eacb voicc, aod tbe hierarchical voice leading within tbe descaot and bass. Eacb viewpoint
b implemented via a different set of primitive functions aod predicates. We will describe a number
of tbese viewpoins below. (Using multiple views of tbe same object for representatioDal md/or al-
gorithmic convenience bas been tried within tbe context of a specific constraint propagation
paradigm, in tbe "ConstraiDts" system of [Sussman and Steele 80], and also in tbe Hearsay-Il speech
understanding system of [Erman et al. 80].)

77c chord slczbton view

Tbe cbord skeleton view observes the cborale as a sequence of rbythmless cbords aod fermatas, witb
some unconventional symbols underneath tbem, indicating key and degree within key. Tbe primirives
of this view allow referencing attributes sucb as tbe pitcb and accidental of a voice of any cbord in
tbe sequence of skeletal chords. For exanple, tbe rules on tbe preparation and resolution of tbe
seventb in a seventh cbord are expressed in this view.

Tlv fill-in *w

Tbe fill-in view observes the cborale as four interacting automata that change states in lockstep,
generating the actual notes of the cborale in tbe form of suspensions, passing tooes and similar
ornamentations, depending on tbe underlying cbord skeleton. Tbe primitives of thjs view allow ref-
crencing attributes of eacb voice at a weak eigbtb beat and ar1 immediately following stroDg eigbth
beat- For example, tbe constraint about not sounding tbe rcsolution of a supension over a suspen-
sion is expressed in this view.

Tle nelodic string vbw

Tbe melodic string view observes tbe sequencc of individual notes of tbe different voices from a
purely melodic point of view. The primitives of this view allow referencing tbe attributes of any note
within tbe sequence of notes of a voicc. CoDtrapuntal concepG sucb as restrictions on sevenths and
nintbs sp.nned in three Dotes zue expressed in this view.

The Sclenl<crian analysis view

The Scbenkerian analysis view is based on our format ren'riting rules inspired from lscbenher 79].
Tbe descant and bass are parsed separately according to tbese rules. Tbe Scbenkerian analysis view
observes tbe cborale as tbe sequence of steps of two non-deterministic bottom-up parsers [nbo and
IJllman 77] tbat scan the descant and bass while maintaining a stack and going tbrough a set of states.
Tbe primitivgs 6f rhis view allow referencing parser related attributes, sucb as tbe output symbols,
or tbe stack action, during a given parser step.

1.4.2 The herrisfic $rategr

It is a knorrm fact to professors of Harmony and CounterpoiDt tbat, even if all tbe textbook rules are
rigorously followed, it is possible to get "correct" but musically uoacceptable results. (Better buman
students apparently use additional knowledge loosely termed as "taleoL") Mecbanical composition



procedures that rely only oo absolute rules and random search metbods are especially vulnerable to
getting trapped in a very uumusical path. To add proper direction to the muic, it is necessary to in-
oorporate in tbe program a body of practical recommendatioru, or beuristics, about whicb
notes/cbords to cboose next, given that a certain portion of tbe chorale bas been already written.
Tbis we call a beuristic strategy. Using mainly our owD intuitions and empirical observation, we found
a substantial number of beuristics for guiding tbe search, and imposed a priority upon tbese beuristics
to handle conflicting cases. Elamples of heuristics would be to continue a linear progression, or to
follow a suspension by another one in the same voice.

1.4.3 Implenrentadon

An expert system is usually known in tbe A.I. field more by the esoteric control structures it intro-
duces tban by its achievements in its field of expertise. However, we believe that suiving to use
simpler control structures is a more appropriate approach to the design of large systems. Our irnple-
mentation exploits the benefis of a simple and expressive control structure, wbich achieves end re-
sults comparable to otber expert systems, wbile avoiding tbe complexity inherent in more
sophisticated coouol stnrctures sucb as opportuDistic scheduling [Errran et al. 80], or multiple queues
[Stallman and Sussman 77].

Our program is built upon a stack-based intelligent backtracking algorithm lSussman 73, Srallman and
Sussman 77, Bruynooghe and Pereira 81, De Kleer and Williams 86]. Tbe program tries to generate
tbe cborale from left to rigbt" aU voices in parallel, and stage by stage. At each stage, every possible
item that can be added to the partial chorale is generated, and those items tbat comply witb the rules
are ordered according to the prioritized beuristics. The program tben tries to continue by adding the
best item to tbe chorale. When no acceptable candidates are found at. a given stage, the program
backtracks to the most recent stage suspected of being responsible for tbe failure (whicb is not nec-
essarily tbe previous stage, u'bich may be totally irrelevant to tbe failure). lntelligent backtracking is
fully compiled in the CHORAL system, unlike the previous interpreter-based research effors in this
field. The slack-based control structure simplifies bookkeeping.

Tbe size of the cborale generation problem is computationally (and intellectually) beyond toy prob-
hm limits, and efficiency is mandatory. A reasonable upper bound to the number of possibilities to
consider for jtst one chorale is about 10s, whicb our system bas to reduce by early pnrning. (Perhaps
the difficulty b intrinsic; it may take a eomposer several hours to imitate a Bacb cborale
ntisfactorily, altbough it is possible to work much faster in a school exercise contexl)4 Lisp is a great
design language but a poor production language for ambitious projec6: it bas some tendency to re-
strict the problem dourain to computationally small problems in many existing computing environ-
ments. This remark applies a fonioi to "packages" writt€n in Lisp, e.g. some logic programming
systenrs [Simmons and Chester 82, Robinson and Sibert 80]. To overcome the inefficiency of Lisp
but still benefir from tbe design advantages, the foilowing scbeme was adopted: The predicate cal-
culus formulas are specified in Lisp syntax, and then are compiled into C source code by a Lisp pro-
gram, namely the BSL compiler. AII of the heavy computation is done in C. (For searcb problems
involving simple integer computations, tbe C code generated by tbe BSL compiler is better by a typ-
icd factor of 34 tban compiled Lisp on traditional architectures such as the IBM 3090 (PL.8 conr-
piler vs. VI\4/Lisp), or the DEC VAX ll/7AO (cc vs. Franz), assuming tbat all available
optimizations have been applied to the Lisp program, such as fixed arithruetic, and uncbecked oper-

The cxprcssion about iniuting a Bach choralc nceds to bc clucidated. Therc is oftcn a confuion of tenns betwecn thc
true Bach chorale stylc and thc srylc of the school cxercises *ritten by professox and studcnB of clcmcntary harmony
ia an (oficn vcry unsucccssful) attcmpl lo imible rhat stylc. Convincing imitations of Bach choralcs are probably beyond
thc powcrs of ordinary musicians, and the bcst q'e can rcalistically cxpcct from talentcd composcr scem lo bc vcry
musical chorales that occasionally use Bachian idioms: considcr, c.9., the solutions lo thc exerciscs in rhc "chorale style"
in Volurnc III of lKocchlin 28]. An cxample of a more scholarly treatise on the Bcch chorales is [McHose 47]. which
could, in theory. allow a rnorc loyal irnitation of thc Bach stylc. but McHose does not give any subsuntial harmonization
cramplcs nor writlcn by Bach (or his stylistic prcdecesson). What is cenain is that imitaling the Bach chorale slyle is
far morc difficult than thc confusion of tcrms might suggest.



ations (these optimizations have a substantial effect on Lisp, witbout tbem Lisp stows down by a
factor of 5-16). See appendix D for some performance comparisons between BSL, Lisp, and Prolog
on the IBM 3090.).

Tbe outpus of the CHORAL system are routed to a graphics terminal in the form of conventional
music notation, or are saved in a file for later printing on a laser printer. Tbe Scbenker-style hierar-
chical voice leading analysis of the descaDt line is also sbown in the output, in slur-and-notehead no-
tation. The CHORAL system is capable of explaining is compositional choices.

Generating music in any noD-trivial traditional style u'ith a purely mechanical metbod is, as one would
guess, very difficult- Although Bach's cborales did serve us as tbe higb standard, we were of course
not expecting at the outset to obtain a program that would produce only all tbe beautiful chorales tbat
he would bave urritten We were instead viewing tbis research as a venture out in tbe fronders of tbe
capabilities of expert systems, and as a tool for a more precise understanding of the Bacb cborale style
and Schenkerian analysis as applied to tbe microcosmos of tbe chorales. However, at the end, our
program did produce rrany chorale barmonizations that display aD acceptable degree of competence
from tbe vieu'point of an educated musician, as well as good hierarchical voice leading analyses of
some descant lines; bowever, we did not have much luck with hierarchical voice leading analyses in-
volving rbe basses 2s ef this time. An example from the output of the CHORAL system, consisting
of the harmonization and descant analysis of chorale no. 39 lTerry 64], is given in the ensuing pages.
The figures undemeath eacb oote of tbe descant analysis indicate, from top to bottom, the deptb (or
level) of tbe parser stack after tbe note is scanned, the parser state after tbe note is scanned, and tbe
sequence number of the note in tbe input stream. Tlre Schenkerian fundamental line (a fifth
progressioo in this case), can be traced in those notes where the stack level is 1, except for the final
note, whose level is 0. Tbis informal slur-and-notehead notation for the descant analysis is followed
by a trace of the step-by-step operation of the parser, which includes a list of tbe nodes of the parse
tree for this analysis, in tbe order they were outputed by tbe parser.
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CHORALE NO.39

0. tnpsc - OUtFc (n c5-{l) Sate: r Lere} I

i. ffi; c5-l Ouqun (o cS-tXs c54 cS-t) Sotc: u l'erel: l

;:i;;tdrs-l o"tp,r. (n df5-2Xs c5-l d'3-2) Sote: I Lcrd: 2

3. lnnrr c5-3 ortpuc (b i-l li-zlto.s-'(s dr5-2 cs-3xtp dt3-2 G5-3) sotc: r lad: I

l. ifrr, c5-3 Otrrprc (s c5-t c5-3) Satc: u Lcrd: t

;: il; i;r-n Itq,Jtn f*3-'l)(s c5-3 re3-r) sore: tr'ctd:2

; ffi; Js-s outp,,, (o g5-5)(s lt5-{ t5-5)-Sote I Lrrd: 2

; 6;; L-6 o.,tput' (a r5-6)(s g5-5 d-5] sotc: I lrrc: 2

i tc gs-r OurPuc Q ca-3 rs--5Xn gs-7)(s r5-5 35-?) Srete: I [rrd: 2

i 
-lrh,, 

i*s-e Ou9"" (n fr5-t)(s g5-? fs5-E) Sote:-l |-erd: 2

t0. InFrt: c5-9 orrqut: rn es-9lis fis-s c5-9Xb e5-5 c5-9) Sate: u lrrd: I

i f . lon t, r5-9 Ourput: (s c5-3 c5'9) Sute: I L'crd: I

ii. iri.r, c5-10 Outguc (o c5-t0Xs c5-9 c5-10) Sanc: u L'ervd: I

ii. 1e",, cS-l I Outprt (a c5-t t) Sotc: u l*tcl:' 2 
-

;;: ilr;;,d5-I2 Ouqnrc (n ds-l2Xs c5-l I ds-rz) Strtc: I l-erd: 2

15. lryut: c5-13 ouqur: t" J-lsiit d5-12 €5-t3XlP cs-l I c5-13) Sete: u kvel: I

ii. 6",, c5-13 Output: (s c5-10 c5-13) Sate: u l'cvel: I

i i .6",,  d5-l l  Output: (n d5-t 'Xr G5-13 d5-t ')  Sote: I  | .ad: 2

ie tilrr,, c3-!5 Output (o c5-lSXs d5-l' cs-t5,) Sorc: I L:rot 2

iS. ir t . ,  M-16 Outpuc (ab' l- |5)(sd-I5 b{-t5) Sere: I  Lad: 2

io. 
-Irilrt,r4-17 

Output: (n d-l7Xs M-15 e'-t7) Sotc: I krcN: 3

21. tnpuc M-tt ouput: t i  u- loi l-rz)(o b4-tt)(sr4-l? b4-l t)(b ra-t? M-lt)  stetc: t  l -erd: 2

ii. iln,, b,4-lt Ouqut: (s M-16 b{-t t) Sate: I l'crcl: 2

ii. itp.t,, r4-19 Output: (n rl-19)(s b4-tE 14-19) Srrrc: I l-erd: 2

il. ii",, rr-20 Outprl: (n e4-20)(s rd-19 e'-20) Sate: I lrvd: 2

25. InFrt: b,l-2 t orrqut: (; ;-t'j tl-zoltn ul--1t )G d-20 b4-2t ) Setc: ll'ctd:2

il. frr,, c5-22 Ouryut: (r c5-22)(s ba-Zt c5-22) Sate: I Lerelr 2

2?. brFrt: d3-23 OuQur f" aS-ffiit 
"S-22 

d5-23)0p 14-20 d5-23) Strtc: u Lcrd: t

:e i{u" d5-23 Ouquc (t c5-13 d5-23) Sotc: I t'crel: 2

iC. try,r,t r{-2a OutFrc (r r4-2rl) Srete: u Levd: 3-

iO. fry",, b4-25 Ourput: (D b4-25xs r'-2' b'-25) Sntc: I Lerd: 3

f i. d.,, d-25 Output: (n c5-26)(s b''-25 d-26) $E1s; I L'rd: 3

ii. nit,, d5-27 Outrur: (n d5-27)(s c5-26 d5-27) Sare: | ['erel: 3

33. InPu.: c5-2t OutPuc io tS-U gltt d5-27 €5-2txlp rl-24 €5-2t) Stur€: t l-erel: 2

3.t. tnFrr: r5-2t ourpuc ib;-; d5-23)(s d5-23-c5-2EXb d5-23 e5-2t) stetc: u Lcvcl: I

iS. dn,, c5-2t Output: (s c5-13 c5-2t) Sorc: u |.erd: I

le. Le,rt, c5-29 Orq'uc (o c5-29Xs c5-2t c5-29) SEtc: u Lerd: I

iZ. Iry.r., 15-30 Output: (o 15-30) Sote: u l-td:2- .
ii 6". *s-rt ouqur: tn 3f,5-31)(s 15-30 ry:-3]) 

strrc3 | l'"L 3

!9. lqrt: 15-32 outprc fi i-lo Ji-lr)(o-i---1.2)ts gl5-3 t 15-32) satc: I Lcrd: 3

f0. t4ut: b3-33 ouqut: iIus-illis ts-32 b5-33)(b s*5'3t b5-33) Sttte: u l.etd:2

f l. fnpt: b5-33 Ouqut: (s 15-30 b3-33) Sote: I l-erd: 3

12. bprt: rs-3a ot tFrt: i*-lo b5-J3)G f:3-1Xs 
b5-33 r5-3{) str'€: I Lcrd: 3

a3. lnFc a5-35 ooqut: i;is-lsla ts-j'{ 35-35)(! b5-33 85-35) Satc: l lrrdr 2

rl. tapur: !S-f S O"tpu,t (s d-30 35-35) Sarc: I Lerd: 2

15. lriut: i*s-le o"pt"r (D fss-3t)(s t5-35 t#5-36) sote: I ['rrd: 2

r5. Inpt: c5-3? ouquc i" J-Jfltti*i-36 G5-3?-Xb 15-30 c3-37) Sote: o Lcvd: I

f?. lnput: c5-37 Ougut: (s e5-29 c5-37) Sote: u l-erd: I

ie. 6;, f*5-3t Output, (n r*s-lext 
"s-37 

ft5-3t) Satq l Lcrd: 2

a9. L;fi 35-39 Output: (o g5-39Xs fs5-3t-g5-39) Sate: I Levd: 2

50. lrpst: L-lo O.rqurt (n c5-'0) Sotc: u L:rcl:3
if , hg",t 33-41 Outpuc (n g5{t ) Sore: I L:veN: 2

1i.6",, isrt Ou.p* (s e3-3e e5-'t) so19: l.!3e* z
li. ui",, is-lz O.rq.r,' (dc5-3ie5-'l)(n d5-{2) Stetc: u Lcrelr I

li. iit,' d5-42 Output: (sc5-3? d5-{2) Sate: l-l,ew):2

iS. friu,, c5-{3 Outpuc ir c5-'3)(s d5-'2 c5-'13) Sote: I l:rel: 2

ig. fne.r,, b4-41 Ouput: (r M-'4)(s c5-'3 b4-44) Sote: I Lrre.l: 2

lZ. 6rr, r{-{5 OutFrt: (n r'-45Xs M{' r4-'5).Sot€: I lrrd: 2

ie f"e,r,, c5-45 Ouqut: @ c5-3? d-{5Xn c5-16) Sote: u Lcvel: t

iC. ;Fr,, c5-15 Outpur: (s c5-3? c5{6) Srete: u-l'erel: I

eO. tg.rr, d5-6? Outpt: (n d5-'7Xs G5-{! d5*11] Sote: I L'erd: I

ii. iln,, cS-{t Output: io c5-{sXs d5-{? c5-'6) Strte: I l'cvel: I

ii. 6,, b4-49 Oupur; (n M-{gXs d-6t b'-'9) Scre: I lrvel: I

63. bFtc 14-50 Ourpuc it tl-SOiit ul-19 e'-50Xb c5-{5 14-50) Strtc: u l'cvel: 0

Figue 1.2: A race of tbe step-by-step openrtion of the parser on no' 39
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t.5 Artinciel illelligcnce topics investigated In this research

We will summarize below tbe artificial intelligence issues investigaad in tbe tbe scope of tbe present
research.

To implement tbe CHORAL system we have developed BSL, a new and efficient logic programming
language fuodameotally differeot from Prolog, tbat forms a bridge between nondetcrministic lan-
guages and logic prograsrming. Tbe relationship of a subset of BSL to predicate cdculus was rigor-
onsty establisbed, and a compiler for BSL was implemented on a VAX ll/78O @mputer, and later
on IBM 3081-3090 computers. Tbe multiple viewpointknowledge representation tecbnique [Erman
et. al 80, Sussman and Steele 80] was generalized and extended to a predicae calculus environment.
Through tbe technique of direct compilation of a BSl-eucoded kno$'ledge base, a solution to tbe
knowlidge compilation probtem was investigated lSrefik et al. 82, l-owerre and Reddy 80]; this
probtem is expected to be increasingly imponaot in tbe near future. Finally a non-trivial exPert sys-
tem application was implemented using a streamlined architectural design approacb, which we n'ill
contend to be a better methodological approach for rbe design of ambitious exPert systenrs.

1.6 Organization of the present regort

In tbe nen cbapter (cbapter 2) we sball describe and tay out tbe theoretical foundations for tbe oice
by-product of our research: a oew logic programming language, called BSL. Chapter 2 may be
skipped witbout loss of continuity by readers wbo are not interested in tbe derails of BSL and the
rigorous exposition of is foundations. Chapter 3 begins with a sumnary of tbe BSL language, and
describes the CHORAL system iseU, along witb our Scbenker-inspired tbeory of voice leading'
Appendix A contains sarnple outpus from the CHORAL system. Appendix B contains tbe complete
list of tbe musicat rules and beuristics used in tbe program. Appendix C provides a synopsis of tbe
BSL compilation algorithm, and Appeodix D contains directions for using BS.L.



C}IAPTER 2

BSL:
AI\ EFFICIENT

I.OGIC PROGR,LVMIN G T"ANGUAGE

2.1 Incoducdon

In tbis cbaprcr, we will describe BSL (Backu3gking Specification l-anguage), a new programming
language wbose programs look like formulas of first order logic. From tbe procedural viewpoint, BSL
is merety a singte-assignment nondeterministic language witb Pascd style data types. It bas a Lisp-
like syntax aod b compiled into C via a Lisp program. However, BSL bas a feature whicb distin-
guishes ir from existing nondeterministic languages Bloyd 671 and makes it a neu'paradigm in logic
programming: tbere is a simple mapping tbat translates a BSL program to a formula of first-order
predicare catcutus. For exampte, to generate binary strings of length 10, one would $rite iD BSL

(E ((a (anay (10) intcger)))
(A i  0 (< i  10) ( l  + i )  (or ( : -  (sub a i )  0) ( : -  (sub a i )  l ) )))

and tbe translation of this program to first-order logic is:

(3a I type(a)-"(array ( 10) integer)")
(Yi l0si< lO)[al i ] -o v al i l -11.

A BSL progran is relaad to its logical translation in tbe following desirable way: f a BSL program
tcrminares is some statr., then tbe correspooding logic formula is true in tbat state (wbere tbe tnitb
of a formula in a given state is evaluated in a fixed "@mputer" interpretation after replacing free
variables of rhe formuta by tbe values of tbese variables in tbat state). For example, tbe BSL prograD
sbown above will reacb a termination state only after constructing ao array of ten elements wbose
vatues are either zaro or ooe. ln fact, successfuJ execution of a BSL progr:lm u'itbout free variables
smounts to a constructive proof of tbe corresponding first-order formula.

BSL is especially suitable for efficient implementation of expert systems tbat employ tbe generate-
and-rcst merbod lstefik ?8, Bucbanan, Sutberland and Feigenbaum 69], and bas been used for im-
plementing a 350 rule expert system for barmonizing four-pan cborales; this expert system will be
described in the nert cbapter. In tbis chapter, we. will fint expose tbe formal basis for a tractable
subser of BSL, aod rigorously esrablish tbe relationship of BSL prograns belonging to tbis subset to
first-order logic. We will tbeD describe the language in more detail in intuitive tenns, and its imple-
menrarioD on VAX ll/780 and IBM 3090 computers. We finally will give programming examples.

2.2 The formd basis for BSL

In order to clarify tbe operatioo of BSL programs, and tbe relationsbip of BSL prograns to logic, we
wil| define below tbe formal language I', a uactable subset of BSL.5

We havc to prcq?rn that our formal exposition of BSL is unfonunately not very casy to rtad. Thc rcader rnay fird it

usefut ro tele a loo\ at thc tutorial ovcrriew of BSL givcn in scction 3.2 before reading scctioru 2.2.1 - 2.2-5. or mat'
skip thcsc scctions.ntb€ly during a fir:t rczding

t5



2.2.1 119 ;el6rtrc af L.

An identifier is a Dou.€mpty suing of letters or decimal digits, tbe firsr characrer of wbich may Dot
be a digit' Tbe reserved words: aDd, or, A, E, array, integer, record, t5rpe, U, dot, sub are excluded.

Tbe language lt is formed from tbe set of symbls consisting of identificrs, integer coDsraors (Don-
empty strilgs of decimd digits possibly preceded by a minus sign), resewed words, retational symbols
(, ), (-, )r, rr, !-, tbc assignmentsymbol :-, binary operation symbols *, -, r, /,znd paren-
tbeses (, ). Two symbols must be separat€d by a blank if neither of tbem is a parentbesis, but blanks
rnust Dot occur within symboh, as in Lisp lists.

A record rag is an identifier.

A type is eitber "integer", or "(array (n) t)A)", or "(record (mt 0p) (mztlm) ... (mr 0,p))", wbere
* > 0, n is a positive integer @nstant, tlh ... Wr:re types, and m, ,...,m, are distinct record tags.

A constant symbol either a record tag, or an integer constanL

A variable is an identifier. Variables and record tags are reken from disjoint sets of identifiers.

A funcrion symbol is one of tbe operation syrnbols *, -, r, ,/, dot or sub.

A predicate symbol is one of the relational symbols --, !-, (, )-, ), (-, or tbe assignment
symbol :-.

We inductively define a formula belonging to the language L. below.

Terms: A variable is a term. A corutant symbol is also a term. If /is a function symbol, and tr, /. are
tenns, tben (/4 rr) is a rcrn. Tbere are no other terms.

An fvafue is eitber a variable, or a rerm of the forno (fi (f, -.. V^ r ... ) ...) ...), wbere each one of f
-.. f"b citber dot or sub, and wbcre x is a variable.

Atomic formulas: U p is a relational symbol, and 1,, t2 are tenDs, and I is an lvalue, rben (p t, t) aod
(:- / rr) are atomic formulas. Tbere are Do otber atomic forurulas.

Formulas: An atomic formula is a formula. U F, and F2 are fomrulas, cond is a fomula not containing
:rny occulTeoces of ; -, A or E; r is a variable, inil b a ternr wbere r does oot occur, racr is a term,
and t1p is a type, tben (and Ft Fr), (or Fr FJ, (A x rnr? cond incr Fr), (E x init cond rncr i!,) and
(E ((x W)) f; are formulas. There are no otber fonnulas.

A variable .x within a formula of l' is said to be free ilf it is not enclosed in a fornruta of tbe form
(A x -..), (E r ...), or (E ((x ...)) ...). A formula tbat does uot bave free variables is called closed.

2.2.2 Outlioe of the fornal basis

We n'ill establisb the formal basis for tbe lt laoguage in tbe next three sections. An outline of rbis
formal basis is given ia tbe following paragrapb

The programs of tbe L'programming language, lbe "pure'r BSL, are called formulas, because of their
similarity to formulas of first order predicate calcuhs. We describe a mapping that transtates a given
formula of l'to a formula of first order predicate calculus, to make tbe correspondence clear. Both
tbe :- and -- predicate synrbols of l'are translated to the equality symbol with this mapping. We
then specify a fixed interpretation wbere tbe universe consists of integers, inductively defined a:rays
and records, and otber ancillary objects, and wbere function symbols and predicate slmbols are giYeo
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tbeir natural 6saning. We tben describe, througb a set of inductive definitions, an abstract inter-
preter to execute a formula of l'as a oon-deterministic program. Tbe interpretcr is a teruary relation
* sucb tbat *(f, osn o) ttreans formula F terminates in final state o when started in initid slate oo
A statc is defined to be a mapping from variable names to elements of tbe universe, as in, e.g.
[DeBakker 79]. We tben prove that for each state o in which a foroula of I' ternrinates, the corre-
sponding fint order predicate calcuhs formula is true in o, wbere tbe trutb of a formula in state o is
evaluated iD tbe fired iDterpretation afrcr replacing any free variables .x occurring in tbe formula by
o(x). Thts it will be seen tbat execution of a closed formula F oI Lt iunounts to a coDstrucive proof
of tbe correspooding first order formula F: tl any cxecution of F terrrinates, tben.C is rue in tbe
fixed intcrpretation.

2.2.3 The corespondence between forurulas of L. and formulas of a first-ordcr language

We will now describe a cenain first-order language [Shoenfield 67J L, aod a mapping Au[u'] tbat
g'rncla1g5 formulas of I. to formulas of I-

For convenience of presentation we will assume tbat symbols longer tban one cbaracter are allowed
in .L, and are differentiated as syrrbols via a set of lexical conventions, as in a oomputer laoguage.
The variables of I, are tbe variables of L.. T\e n -2ry function symbols of L, n ) 0, include rbe
function symbols of L', whicb are all binary. In addidon, .L has a unary function symbol "type", as-
sumed to be distinct from all otber synbols, and for cach formula of Lt of the form (A x init cond
incr F) or (E r inil cond incr F),1bas a corresponding function symbot distinct from all otber sym-
bols, wbose arity is oDe Eore than tbe number of free variables occurring in init, cond, or rncr (noe
tbat .r is not among tbese free variables). I, does Dot bave any rnore z-ary function syrnbols, for
n > 0. Tbe O-ary functioo symbols of I, include tbe constant symbols (integers and record tags) and
types of Lt. L bas more 0-ary functions symbols, its O-ary function symbols are precisely tbe ele-
ments of tbe universe lM I of a fixed structure M, wbicb will be defined below. Tbe predicate
symbols of I, consist of -, #,

We iroductively define a translation function tru[u'] f1e11 gpp5tent symbols u function symbols u
tcnns u predicate symbols u formulas of Lt w functioo symbols u t€rms u predicate symbols u
fonnulas of L as follows: If u is a constanl" variable, or fuoction symbot ol Lt, tben ut is tbe same
as r. The predicate slmbols -- i[ld :- of Lt are botb mapped by'to - i! l, aDd !-, (, )-, ),
(- of Lt are mapped to r., <,:,>,3 of L, respectively. U u is of tbe forur (f \ t2), wbere/is a
function symbol or predicate symbol oI L., and {, trare Lt terms, r'Uf t/r,/). Now assume tbat
F, Fr, Fz, arc L'formulas,.x is a variable, t1p is a type, inil, incr are Lt tertrr n'bere r does Dot occur
in ini,t, and cond is ao Lt formula not containing any occurences of A, E, or :-. If r is (and \ F),
rbenu' is U/r  &t ' ) .  I f  z is(orFrfz) , tbanr ' is [Frvfr l .  I f  r is(E((x }r i ) )F), thenz' is
(!lx)[type(r) 

-"W" * F]. tt u is (A x init cond ino F), tben let i be the funcrion synbol of Z corre-
sponding to u. [-etl stand for tbe possibly empty sequenc€ lt *.,1* whicb are the free variables of
init , cond, or incr. TbeD u'is,

(Yn > 0)[s(, (n,-y), x,conl)>dh(u,, j),:, ts)]

where n is a variable cbosen to be distinct from tbe free variables occurring in init', con/, incr', or
f , (Vn 2 0) G is an abbreviation for (Vn Xn 2 0 * G], and s(t, x, z) is tbe resulr of substituting renn
t for all free occurrences of variable x in tgrm or formula zim L. In case some quantilier in; would
make a free variable of r bound after the substitution, we assume thar tbe offending quaorifier vari-
able is renamed in z before tbe subsriturion is made. ln case -f is ttre empry sequence, we agree tbar
n@,i,\ stands for i(n). Tbe transtation of rr - (E x init cond incr F) is; similar', and assuming f ir tl.
function symbol of I, corresponding to u, u'is:

(3|r I oxs(r(n,-i), x, con/y a s(fi(n,-i), r, F')l
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wbere (n? >0) 6is anabbreviat ioofor ( i l rXn:0& 61, andn is avariable rbar is cbosenrobe
distioct from tbe free variables of initt, con/, incy' or F.

If A is tbe fuaction symbol of t corresponding to (Q x init cond incr F) of L., where p is eirber A
or E, and iti it the scguenc€ of free variablei o..uiiog in init, cond, or rncr, as defined above, we
associatc an I formula witb l, called the defining formula for i whicb bas tbe foUon'ing fonn:

(Yt) Ur(o,J;) - init' &
(vn Z O)th(n + l,!) - s(i(n,i), x,incr') & s(h(1,i,1, x, con/1 v

h(n + I 'y)  
-  

h(n,) ' )  & not[s( i (2,  y),x,conl)Jl

We give bere an example of tbe tanslation of a formuta from l. to I,:

L. :
(A i  0 (< (sub a i )  100) (+ i  l )

( : -  (sub a (+ i  1))  (+ (sub a i )  k)))

L:
(Vn > 0)[alb(n,a)]( I 0O* alh(n,a) + l]- a[h(n,a)]+kJ.

Where b is assumed to be tbe function symbol of I tbat conesponds to this l'formula.

Tbe defining formula fsr rhi< panicular b is:

(Va) [b(0,a)-0 &
(Vn: 0)[b(n+l ,a)- ! (s,3)+1 & dh(n,a)]<100 V

b(n + l,a)-!(n'a) & nor[a[h(n,a)]< lO0ll'

As seen in tbe examples above, in Z formulas we will bc rsing infix abbrcviations sucb as x + y for
+ (r.,'), as well as tbe abbreviations xb'], x./ for sub(xy), asd dot(x;l'), respectively. We will also as-
sume tbat binary logical cooDectives bave tbe precedence &, V, i, q.p, listed io decreasing order,
and tbat tbey associate to rbe righr.

2.2.4 An lnterpretetion for first.order translatioru of L. formrdas

We define below a fixed structure M lSboenfield 6?] for tbe formulas of l. Tbe universe of tbis
structure consists of integers, :urays, records, and otber anciUary objects, and tbus tbe structure lt is
lbe natural one for assenions about computer programq.

l}e tiniverse lM I for tbe structure is a set of strings. Tbese strings are non-empty sequences of
symboh, wbere the possible symbols are tbe same as tbose tbat form lt. Two symboh withjn such
strings must be separated by a blank if neitber of tbem is a parentbesis, but blanks must Dot occur
within symbols, as in Lisp lists [McCartby et al. 69]. Tbe universe lM I consiss of objecs, types,
record tags, aod tbe individual l. Tbe record tags of lM I are tbe record tags of L.. L is a special
individual distinct from all otbers, whose intuitive purpose is to patcb uodefined values of functions
to make tbem total. Tbere is a mapping from the set of objects to tbe set of types, tbat assigns a type
to eacb object- Tbe set of types is merely tbe image of tbe set of objects under thi< mapping. We will
ioductively describe tbe set of objec6, and rhis mapping from objecs ro types, below:

Scalar objecs: An integer is a scalar object. U is also a scalar object, it is read "unassigned". There
:ue Do otber scalar objecs. Tbe type of a scalar object is "iDteger".
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Objecs: A scalar object is an object. Objects whicb are not scalar objecs are catled aggregate ob-
jecLs, and are defined as follows: If .re" r1,... r,-1 ilf,€ objects eacb of wNcb bave tbe same tyge tJp,
tben (rix1 ... r,-1) b an object (called an array), and is type is (array (n) tW), wbere n is a positive
integer coDstanl If 1, ...,:r. are objecs that bave types typl , ..., OA, respectively, and { ftr1, ..., tn1
are distinct record tags, then (nrr :r ... mr xt) is an object (called a record), and its type is (record (
mr W) ... (mt r.p*)). Tbere are no otber objecs, and therefore no otber types. It sbould be noted
that tbe types of lM I are lbe same as tbe types of Lt.

The function syrnbols of L are given tbe interpretations below in M:

Tbe unary function type(;r) returns tbe type of .x il: is an object and .L o$erwise.

I f -x isarecordoftbeforn(ra1 xr. . . f rnxn)andyisarecordtogequal toD?plS&Sn,tben
dot(xy) is tbe object x* Otberwise dot(xy) is {

U r is an array of tbe form (& xr ... x"-t) and.p is aD inrcger sucb that 0 S .y < n, tben sub(x;l') is tbe
object.r, Otberwise sub(x.1') i5 r.

bt f be one of tbe binary functions * ,-,' ,/ . U ry are integen and tbe result of the natural operation
corresponding to .f is defined on tbe operands r and H and is equal to tbe inte ger z, l\rg) is z. Oth-
erwise,/(x;) is r.

Tbe binary predicates <,>,S,> eacb correspood to a set of pairs of integers as dictated by tbe na-
tural definition of tbese predicates. WbeDever a constituent of a given pair of elements of I M I is
Dot an ineger, tben tbat pair does not belong to aDy of tbese predicates. Tbe predicates - and r.
are given tbeir natural meaning.

Eacb function symbol conesponding to :rn lt fonnula of tbe form (E r -..) or (A x ...), is given an
intrrpretatioD satisfying its defining fornula, whicb can be made precise by tbe following compura-
tion: If i is sucb a functioo symbol of arity /< + l, ft > 0, n is an integer great€r tban or equal to 0,
andcl , . . . ,crbasequeDceofelementsofJMl, thatwerpi l labbreviatebyc,tbevalueofn(n,c_) in
theinterpretar ionisfoundbyf indingrr(0,c)_intemrof c, tben h(7,c) intermsof i (0,c)andc,as
givcn by tbe defini.g formula, ..., until h(n, c) is found. But wben tbe first iugumeDt of i is not an
integer, or wben it is less tban 0, tbe function i is defined to yield I.

Here are some examples that demonstrate tbe operations on individuals within tbe structure M:

sub((-13 U),1)-U

dot( (sso 999 123 456 salary 2 50O0 ),ssn) - 999 123 4 56

wbere ssn, sdary are record tags.

U+l-l ; 0<l is true; l<U is false; I )U is false;

2.25 T}le sern^ndcs and sourdness ef fev6rrlae of L. es mn-determinMc programs

Tbe above discussion describes tbe logical semantics of a formula of I tbat corresponds to a formula
in Z'. A formula in .L' is also a non-deterministic computer program to execute.

We define a state to be a mapping from tbe variables of l" to elemenb of tbe univene lM | . We let
o, 06 ('y... r, is e 7y..., raDge over states. U F is a formula of l, we say $at o satisfies F, or F is true
in o, iff the formula G obtained after each free variable x of F is replaced by o(x), is true in M.
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'We say an object x is an immediate subpart of an object;'if .f is formed from x (and possibly otber
objects), as indicared in tbe inductive definition of an object above. We say rhat object.r is a subpan
of object ;' if .r is y, or if tbere exists a sequence of objecs :o...Jr, k > o, wbere rb is x, x* is y . and
4 is an immediate subpart of 4*, for all i, 0 S i < k.

An lvdue of .L is citber a variable, or a r€rm of tbe forn ftVzG. f,(x,...)...),...), wbere each f,,
I S t S tt, is either sub, or dot" and wbere x is a variable. Tbe principal variable of tbe lvalue is de-
fined to be eitber tbe variable x as described, or tbe lvalue iself, in case tbe lvdue is a variable.

We define Ylobe a function sucb tbat Z(o,r) yields tbat element of I M I which is tbe vdue of I tem
, in M, after any free variables:r of I have been replaced by o(x).

I-et / be an lvalue oI L, and / a tertD of l, and o a state. Lct.r be tbe principal variable of /. Tbe result
of  tbesubst i tut ionof r for l ino,Dotatedzso[t / l ) , is tbatstareT, suchtbat i tV(o, t )andV(o,[)are
botb scalar objec6, or if / is x, tben r is identical to o except that the value of x in t is tbe element of
I M I obtained by replacing tbe subpan of .r designared by / in o by V(oi . ll Y(o, f) and l/(o, t) are
Dot bo& scalar objec6, and if / is not a variable, then t is identical to a.

We defioe below a terDary relation * whicb bas tbe intuirive meaning sucb tbat il F is an lt formula,
and os and o are sultes, tben V(F, oe, o) is true iff o is a final state resulti-ng from executiog Fin initial
state do Note tbat since .F is non-deterministic, there may be utore tbao one state o sucb tbat
*(F, oo, o) for a fixed oe and f, or tbere can be Done at all, in case F never tcrrrinates wbeo staned
in state os.

Tbe meaning of * is defined by tbe rutes given below. We will explain tbe nrles r*irb intuitive com-
ments after eacb rule.

U / is an l' lvalue and r is an lt term.

*(( :-  I  t ) ,og, o) <.t

tv?nhbu &
Yk, f) is ao integer &
o _ oJl/l)1.

Tbus, an assignment is performed in tbe conveDtioDal manner, but if an attempt is made to assign to
an lvalue wbose curreDt value is oot U, or to use a non-integer rigbt baod side, tbe program does not
reacb any t€rmination sEt€.

U relop is a relational predicate symbol of L', and t, and trare Lt tenns,

*(Gelop t1t2), og, o) I

[V1oo, /r) and V(o6 /11are botb integers &
V(o, /r) relop' Vlon /r; is true in M &
o - ool.

Tbrc if any tcnn of a test evaluates to a non-integer value, or if the test fails, tbe program does not
reacb any termination state. A test does Dot cause a change of state.

II Fb Fzare Lt formulas,

20



*((and F1F), o6, o) <9

(3or)[*(4, oo or) & *(Fz, ot, o)]'

(and Fr F) is executed by first executing F1, then F7

*((or \ F2), os, o) O

[V(Fr,oo,o) v V(Fz,ooo)]'

(or F, 4) is erecuted by execudng one of Fl ot F2'

U F is (E ((x ts'il) F) wbere x is a variable, t1p is a type' and Ft is an I-' formula'

9(F, oq, o) <+

(!b,l,urrt)

[s - Z(or x) &
I is ao object wirh rype t1p all of wbose scalar subparts are u &

10- ooft /x)&
{(F,  t6 t1)  &

s _ qls/x)).

Tbus, (E ((x t1fl) Fr) is executed by saring I, setting x to aD object of type r1p all of $'bose scalar

subparts are unassigned, executi-ng i, and iio"tly res-toring x' This construct corresponds to tbe fa-

mili4 $3gi6-end block with a local variable'

u F is (A;r init cond incr F1) wbere x is a variable, t'zr7 is an l' term that does not conhin occurreDces

of x, incris an l' term, and cottd isan l' formula tbat does not cont2in occulTences of A' E' or :-'

and Ft is an tt formula:

9(.F, og, o) r-+

(3/< > 0)(3;0" --. t^Xtu)
[s- Iz(o6 x) &
V(an init') is an integer &
70 - oolini/ /xl &
(Vt l0Stck)(3t)

lconl is rue in r, &
all terms oI con/ are integers in r, &
V(F1, tr, t) &
V(r, incrt) is an integer &
7 ,+r - lfincr' / xll &

cond 's false in 11 &
all erms oI cond are integers in r;, &
o - trls/xf).

Tbus, (A x init cond incr F1) is executed by saving x, setting x to tnit, wbile cozd is tme repetitively

executilg F, and setting.r to rncr, and restoring tb-e saved value of :r wben cond b finalll false' This

constn 
"i 

i5 5imil31 to tbe familar "for" loop of C'
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If F is (E x init cond incr F1), wbere x, init, cord, inu, aDd .Fr are defined as in tbe case for (A x ...),

*(F, oo, o) 1'1

(il/c 2 0X3to, ...,rr)(tu)
ls-V(oo, x\ &
Y(on ini/) is an ineger &
\- o{inil /xJ&
(vr l0st<t<)

lcon/ is tnre in r, &
all terms of con/ are integers in r, &
Y(r,, inc/) is an integer &
7*r' rlincr'/i) A

conl is true in t, &
all tcrms oI con/ are integen in tr &
(3;)[9(Fr, rr,t) &o - 

t[s/xl)).

Tbus, (E x init cond incr F) is erecuted by saving tbe old value of r , setting r to int, repetitively
cbecking for cond and setting x b incr zero or more times, cbecking for cond for tbe last tirne, exe-
cuting F , and finally restoring tbe old value of r. lf cond is false at any point along tbe way, execution
does not reacb any tcrmination state.

We say o is an extension of oq iff o is identical to os , except perbaps for some variables r such that
botb o(r) and oe(x) are objects whicb bave tbe same type, and tbere exists a scalar subpan of o(x)
whicb is an integer, while rbe conesponding subpan of oe(x) is "lJ'.

As an example, consider two states oe and o1, sucb that oo(x) - (- I U U) and o1(.x) - 
(- I 7 l0)

:rnd oe$')-61$') for ally + x. Tben o1 is an exteosion of o0"

We say that o extensibly satisfies F,or F is extensibly true in o,ttf o satisfies F, and for any extension
T of o, r also saGfies F.

Tbe follou'ing theorem precisely defines tbc relationship between tbe semantics of a formula of L'
as a computer program and tbe semantics of tbe corresponding formula of I under tbe intcrpretation
M.

We first need a

Irmma: I-et fi ... F,, F, be formulas of I, and let o, t be states. Tbeo the follou'ing are true:

(a) U o extensibly satisfies eacb of Fr, ... F., and Fr+ ... sF,sF is logically valid, tben o extensibly
satisfies F.

(b) U o enensibly satisfies Fr, aod o extensibly satisfies .q, tben o extersibly satisfies [Fr & .G]. If o
extensibly satisfies 4 and x is any variable, o extensibly satisfies (lr)[Fr]. If a extensibly satisfies
x t nt and d extensibly satisfies lr n, wbere x is a variable, n is an integer eorutaDt, and t is an I
term, and if o extensibly sarisfies d, tbeo o extensibly satisfies s(r, x, .Fr).

(c) U o extensibly satisfies F1 or o extensibty satisfies .F2 , theo o extensibly satisfies t.Ft V fJ.

(d) If o extensibly satisfies Fr, and x does not occur free in Fr, tben ofco/x) extensibly satisfies F,
wbere co is any element of M.

(e) If o extersibly satisfies .F1, and t is an ertension of o, tben r extensibly satisfies F1.



(f) U t is a tern oI Lt, znd V(o, /) evaluates to an integer object c, rhen o exrensibly sarisfies t' - c.

hoof:

(a) Let Gr+ ... +G,+G be tbe formula obtained by rcplacing aDy free variables x of
Ft+ -.. *4+F by o(x) . Since o satisfies Fy ... F,, G1 ,...G,are tnre in M, thrs G is tnre in M becarce
of our assumptioD tbat Frl . .. *i"+F is logically valid. Tberefore F is true in o. Now let r be an
ertension of o. F2... f, are tnre in r, and tbrs Fis true in r by the same argurneDl

(b) Since each of fr+fz+tFr&^Frl, fi'>(3xXFrl and x = n+t 
- n+Frrs(r, r, Fr) are logicaLly valid,

the proof is immediare from (a).

(c) UoextensiblysatisfiesFr, oro extensiblysatisfies F2, tben clearty osatisfies tf, v.Frj. If r is an
extension of o, lben r satisfies 4, or r sarisfies F:. Tbrs z satisfies tFl v F, ].

(d) If o extensibly satisfies Fr, and r does Dot occur free in f,, then o[cu/x]satisfies F,, since .r is not
T.d_ T detcrmining tbe trutb of f1. Now consider any extensio t of olco/ xJ: ir musr 

'be 
of tbe form

fiq/x) wbere t is an exEnsion of o aod eitber c, is ca or c1 is an oblect-wnose type is tbe same as co,
and whicb is identicat to co except for certain scalar subparts where c, contains au integer, and q
@nl"inr U. Since z is an extension of o, t satisfies Fr, and tberefore ,fc1/xlsadsfies F1 siace rbe trurb
of F, does not depend on a free variable x.

(e) Obvious.

(f) Assume Y(o,/) - c, wbere c is an integer objecr- Suppose by way of contradiclion rbar
v(r ' / ) ;  c insomeextension rof o.Tbenascalarsubpanof some vzr i la leyai r* i 'n"".cbanged
from U in o to an inrcger in z, and must be responsible for the discrepanCy. But if a subpan of a
variabf e y tbat is U were used in tbe evatuatioa of V(o, r'; rhen v(o, /) would not be an integer, since
eacb of *, -, t, ,/, sub, dot in tbe interpretation M yield I if any of tbeir argumen6 is u. tr

Theorem: (soundness of I'formula-programs) br V and tru[u'] be defined as above. I;1lt oobe any
state , and .F be a foroula of Lt. Then for all statcs o, it *(F, oa o) , tben o is an extension of oe, aod
o cxtensibly saGfies .C.

hoof: By induction on tbe complexiry of F. If F does not terminate
tbeoreru is trivially true, so assume tbat a o exiss sucb rbat V(.F, oo, o) .

wben staned in state oo the

I f  F is( : -  l / ) ,wbere/ isanl t lvalueand t isaL' term,tbenbyrhedef in j t ion of  * ,V(as, / ) isscalar
and bas tbe_unassigned value, and V(os, /) is an inager. Let r be rbe principal variable of f . a11eo
a - oolt'/f) is rbe result of the replacement of that scalar unassigned Jubpan of x indicared by / in
as, by V(ao, /). No* the cboice of subpan of x as indicared Uy 7 in ,t",. oo, ."n ,* J.p.ud oo tbe
un"qsigned v@nf ), since otberwise v@rf) would be r. Moreover,_since i1oo, t'1is an lnteger, is
conpltarion cannot depend oD :rny unassigned value sucb as v@rf ). Tbu z(o,1,) 

- 
y(oo,V) aad

Y@,f)-V(ovtt) . .Tberefore,osai isf i .s l - / . tUefacttbatdexre; iblysat isf ies i - / , toUo*sfrorn
tbe fact that both I and t'are integen in o, and from (f) of tbe lemma.s Now vGnf) was unassigned
znd V@,f ) is an integer, but otberwise o is idenrical to oo, so o is an extension of os,

I f  f is  ( rc lopqt)wbererclopboneof tbel .predicatesymbols(,) , ( - , ) r , r - , ! - ,andtrand
12arcLt tenns,tbenbydef ini t ion-of * ,(( .oo,/r)au,dv(oo,t ' r )  areintegers,and/ ' ,  relop, /2ir , . ,
in oe, and o - ov Thus o satisfies /, rclop' /r.'fue fact that it does so extersibly foUows from tbe facr

' Notc this propcny is nor truc for assigrmenB of an ordhary programrnhg language (such as x: =l + t ), even for lhe ca<es
whcrc tie rlrs is a consranr: C.onsidcra[a[ t]l:=0 rhere a[l]=l and a[0]=2 iniriitty, rhen a[a[ l]l=0 do€s nor hold afrer
thc assignmcnt [DcBaLkcr ?9].
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tbat botb of /1 or tt, are integers in o, and tbus cannot change value in extensions of o becarse of (f)
of tbe lemma Since o : oo, o is also clearly an exteosion of oo.

U F is (and Fr Fj, tben by definition of g, tbere exists aD iDrcrmediate state o1 such rbar
*(Fr,oool)aod*(F2,ayo).Bytbeinduct ivehypotbesis,orextensiblysat isf ies.Fr,andoisan
cxtension of o1, so o atso extcnsibly satisfies F, by (e) of the temma. But by tbe inducrive byporb-
esis, o extensibly saGfies Fv ud thus [/, & tsr) by (b) of the lemma. Since o is an exrension of
os, it is also an extension of os

U F is (or Fr f2), tben eitber *(Fr, oo, o) or g(F2, os, o) is true, tberefore eitber o extensibly satisfies
f 1 or o extcn.ibly satisfies F , by tbe ioductive bypotbesis. By (c) of tbe lemma, o exleosibly satis-
fies [.Cr V f ,), asd because of tbe iuductive hyporbesis, o is an exrension of oo.

If Fis (E ((x W)) 4), tben by definition of 9, tbere exists, t,rs,rl such tbar s- oo(r) and r is an
object of type tSp all of wbose scalar subparts bave tbe unassigoed value, and zo -ooft/x'J, and
*(fi, ro, 11) bolds, and o - rls/xl. type(x)-"t1pt" is extersibly satisfied by zs (since -r is set ro an
object of typc W b ra and types of objects do bot cbange in extensiors), and also by 11, because ;,
is an extension of ro by tbe inductive bypotbesis, and because of (e) of rbe lemma. Also, by tbe io-
ductive bypotbesis r, extcnsibly sarisfies .C, . Tbrs ftypelxl-,,15,p" & t'rl is cxtensibly sarisfied by
11, by (b) of the lemma. Again by (b) of rbe lemma" f{ - 

(:lx)[type(x)-',t]p" & f'r] is exteosibly
satisfied by tr and thus by o - tis/x), by (d) of tbe lemma. Also, since 11 is an extension oI ts,
o - trts/xf b an extension of oj 

- nls/r)-

Now assume that F is (A x inil cond incr F), wbere rnrr is an l' term not cootainin g x, incr is an l.
term, and cond is an l' formula whicb does not ssslain any (rccurrences of A, E, or : -. te r ! stand
fortbe(possiblyempty)sequeoceof freevariablesn,. . . , ln,occurr ingiDrnt,  condot incr.  L.e.thbe
the function symbol of I corresposcting to F. By definition of 9 there exiss a sequence of inre rme-
diate states 'ro r..,tt, k 2 0, which are traversed while going from oo to o. Now consider the sequence
sf I fsrnrules C(0),G( l), ..., wbere G(rn) is

ls(h(m,i ), x, con/1ss(h(m,i ),.x, I/1)l

We wilf first sbow by inductiou on ra tbat Jor zll m - O,...rt, eacb of G(0), ..., G(m - l) is exre nsibly
tnte in ;. and h(m,y) - Y(r-,x) is also ex6nsibly tnre in r-, where Y(r^,r) sboutd be read as the
constaDt symbol tbat is tbe value of x in state 7-.

Now ,r(0,i-) - V(to,x) is tnre in 16 since by definition of *, V(t, x) 
- V(ou inil') - V(t6 ini/) -V(;6 h(0, yl), tbe second e quality sign being due to tbe fact that ini/ docs not conrain r as a free

variabf e. To see tbat lr (0, .t, ) - -V(to, x) is true in all extensions of re , it suffices to obsen/e, by vinue
of (f) of the lemma, tbzt inil' is an ioteger in state te Now assume 0 J rn < &, and G(0) ,...,
G(m- l) aod also h(m,y) - Y(r^,r) are extensibly !rue in r.. By tbe definition of g, since
m.1k, tbere e:ists a r dependiog oo m sucb tbat g(d, r-, i. B) lbe ourer inductive bypotbesis,
F, is extensibly tnre in r aod r is ao extension of r-. Since h(^,-y) - V(tn,x) is extensibly tnre in
r-, it b extensibly true b r by (e), Eoreover v(t,x)-v(rox\. Tberefore s(i(rn,ll),x,.C, I is
exteDsibly true 

- 
in t, _because of (b) of tbe lemma. Thrs G(m), namely

s(h(m, y), x, cond)4s(h(m, y),.x, tsr) , b extensibly true in r, because of (c) of lemma, and tbe fact
tbat [61+G2J is I not q v G). Since x does not occur free in G(zn), G(m) is extensibly (rue in ;-*1

- ttincr'/xt by (d). Similarly, 6(0),... G(m- l) are extersibly true in t. by oe inner inductive
hypotbesis, and therefore in t by (e), and finally h ?.*l - rfincr'/xl, by (d), since r does not occur
free in any of G(0), ..., G(m - l). Ngw, conl must be exteruibly true io z. sitrce all of is tenns
evaluate ro integers. l\,loreover 

-h(m,y) - Y(tn,x) is exteosibly true in t- by tbe inner inductive
bypotbesis, sos(lr(rn,.r),x,cond) must beextensibly true in z. by (b), apd tbus io z by (e), and tbus
iD ?-.r , by (d) of the lemma. Abo, since Y(r, incr')'ts an i::teger and incrt - V(r, incr') bextensibly



t rueinrby(f) ,s(A(r?, i ) ,  x, incr ' ) -V(t , incr ' ) -V(r- , ,x) isextensiblytruein;andalsoin;-*1,
by (d). So in any extension of ?,*1 tb€ evaluation of h(m * l,y) must yield tbe same value
Y(t-4,x).

Tberefore at surte rr, G(0) 
-..,G(k 

- 1) are extensibly tnte, and so is tbe equality h&,i) - V(tt, x).

By definition of V, conl is fatse in t1 Tbus in r*, for ill k' > k, h(kt,j) - h&,i) is tnre, and
s(h(*',i i,x,conl1b false. Tberefore (v&'> k)tc(k')l is tnre in r.; qrd extcnsibly so, since tbe
terms appearingin conl Dust bave inager values iD r^, and since lr(/<,y) - V(rnr) was shown to
be exrcnsibly true in 11. We had showed (Vn l0 S n < ft)[6(n)] is extensibly tnte in zr, tbts by (a),

f - 1Vn f g)[G(n)] is extensibly uue in ?1, irnd also in q 
- 

trfs/x), because of (d), wbere s is tbe
variable mentioned in rbe definition of * for rhis case.

It is easy to sce thar" for eacb m - 0, ... * - l, 7-+t [s/x] is an extcosion of r-ls/x), and therefore
o - rtfs/xl is an extension of oe - tds/-t] , as required.

Now let .F be (E x init cond incr F). I'et j stand for tbe (possibly empty) sequence of free variables

h, ...,y, , occurring in rnrr, cord or incr. l*t tr be tbe function symbol of I, tbat coresponds to .F.
By definition of *, tbere exisb a finite sequence of interurediate states ts...tt1tbat are traversed
while getting from-initial state oe to final state o. We will sbow by induction on rn tbat for
nr - 0, ... *, h(m, l) - V('r^,x) is extensibly tnre in sute ?-, wbere V(t^,x) sbould be read as tbe
coLstaot symbol that is the value of x in ;..

Cfearly in ts, V(r6 i(0, ri)) - V(to, ini/) - V(o, tnit') - V(to,x) ,-tbe second equality beirg due to
tbe fact tbat x docs not occur as a free variable of init'. Also, i(0,y ) - V(rax) is extensibly true in
te since tbe computation of inf/ in ro gives an integer result" and because of (f) of tbe lemma Now
assumethar i ( rn, ! )  -V(r^,x)  isextensiblytnreisrnrwberern <k.cond rnustbeextensiblytrue
in r- since aU its terms evaluate to integers. so s(i (2, i ) , x, con/) must be exteruibly true in r- by
(b), and tbus in r-*1 , by (d). 4lso, since V(';^,incr') is an integer and incr' - V(tn.incr''| ts
cxtensibly true in r- by (f), s(h(m,y), x, ucy') - V(r-, incr'7 - V(r-+, x) is extensibly true il ;- by
(b), and also in t-*1, b! (d). So in any extension of z.*1 tbe evaluationol h(m + l,y) must yield the
same value V(t-*1, x).

We have thus sbowed tbat i(k,i) - V(tn:r) must be extensibty tnre in to

By tbe inductive bypotbesis, .C, is extensibly true in t and t is an extension of t*, wbere t is a state
tbat satisfies *(Fr, t., t). Tbus, h(k, y) - V(r u x) - V(t, r) is extensibly true in r by (e). Tberefore
sOG, j), r, f ,) is extensibly true in z, by (b). By the definition of 9, con/ must be extensibly true
i! r., because all of is terms evaluate to integers, rhus s(i(k,i),x,cond) is exrensibly true in;* by
(b), and also in ; by (e). Tberefore, again by (b)

[s(i(ft, i), x,conl1 & s(h(k,i),r, ts,)]

is cxtcnsibly tnre io t, and finally, because & > 0, and because of (a),

F - (h : 0Xs(rr(n,-i ), x, conl)& s(i(a,y ), x, F1)l

is extensibly true in t and also in o 
- 

tls/x}, by (d), wbere s is the variable mentioned in tbe defi-
nition of * for tbis case.

It is easy to see that for rrr 
- 0, ... ,* - 1, tulls/xJ is an extension of z-[s/x] and r[s/xJ is an ex-

tension of tr[,s/x). Thus o - rfs/x) is an exteosioo of oe - tds/x), as required. I



Remarfi: Consider a subset of Lt wbere il a fornula bas the form (A x ...) or (E -x...), tben it must
bave ooc of tbc forms

(A:t  ( ( -  . r t t  ( l+.x)F),
(E x tr ((- .r D (1+ r) n,
(Ax 4 ()-  . r  tJ (1-r)  F),
(E x tr ()' .r tJ (l- x) F),

where x is a variable, (l+ r), (l- x) are abbreviations for (+ x l) and (-: l), tp t2?t? terns wbicb
do not contaio -r, and F is au l' formula belonging to tbe subset. Tbe g'anslslieas of l' formulas
of the forms lisred above are equivalent in M to tbe .L formulas

(Yxf /1 3x3/) t f ) ,

( l r f  r '1 3x3/2) lF),

(v.xIr '1 >-x>f)LF],

( t ' l / r  2x2/; [F7,

respect ivety;  wbere (Yxlr"  SxS/)[F] is an abbreviat ion for (Vx)[r ' rSr & xSt 'z+F],
(3xf  t ' ,  3r3/r l f f l is  anabbreviat ion for( i lx) f t ' ,  S.x&r St 'z &.F;,  and (V;r l4 Zx>/) l /J,
(ilr f /, 2 x 2 /r11il are similasly defined abbreviations.

hoof: Predicate calculus aod propenies of tbe structure M. fl

As it witl be seen in tbe sequel, tbe BSL formulas encountered in practicr are alrnost alu'ays of the
kinds meotioned in tbe remark, and variants tbereof (e.g. involving < instead of 4- ;.

2.3 An example of e BSL program

In order to spark tbe intuition of tbe reader, we will give below ao example of a BSL program to soh'e
a little prrzrlg; Place 8 queens on a standard cbess board so tbat no queen takes anotber. Assume tbat
tbe rows and colum-os are nurnbered from 0 ro ?. p[0],...,p[7] will represent tbe position of tbe queen
in row 0,..,7, respectively.

(include stdmac) ;include standard macro definitions
(options registers (k j n)) ;allocate k,j,n in registers

(E ((p (array (8) integer)))
(An01qDB)(t+n)

(Ejo(<j8)(1+j)
(and(Ak 0 (< k n) ( l+ k)

(and(!- ;  1p k))
( ! -  ( - ;  1p k))  ( -  n k))
( ! -  ( - i  (p k))  ( -  k n))))

( : -  (p o) j ) ) ) ) )

In this BSL program, whicb bappens to belong to tbe lt subset of BSL, we iue wing (l+ x) as an
abbreviation for (+ x 1), (p n) as an abbreviation for (sub p n), and (and 4 .FzfJ as an abbreviation
for (and F, (anO F, FJ).

If we use tbe tr:nslation tecbnique tbat. was mentioned in tbe remark given above, the translation of
tbis 8-queens program to first-order logic is tbe followiDg:



(3p I type(p)-"(arra! (8) integer)")
(Vn l0Sn(8)

(3j  l0si<8)
[(vk l0skcn) [ i*plk]  & j -ptkl*n-k & j-plk]*k-nj
& P[n]-11

which can clearly be seen to state tbat there erisS ao :rmry tbat is a solution to tbe eigbt queers
problem.

BSL is a non-deterministic programming language. Tbat is, a giveo BSL program cao in general be
executed in more tban ooe way. A BSL program is ioplemented oo a real, deterurinistic computer
by compiling it into a C program whicb in principle attempc to simulate aU possible executions of it.
For example. thiq particular Lt formula for solving tbe 8-queens problem compiles into a C program
which simulates all of is possible executions, and prints out tbe value of tbe array p just before the
end of every execution tbat turDs out to be successful. Tbe register declarations given in tbe option
list are passed to C, aod cause tbe C compiler to place tbe variables k, i, n in registers if possible.
Note that our l' soundness tbeorem indicates that at tbe end of eacb successful elecutioo of this l'
formula, p bas a value tbat is a solution to tbe 8-queens problem; in fact" eacb successful execution
of a closed l'formula constitutes a constnrctive proof tbat tbe correspooding first-order formula is
true in M.

2.4 Descriptioo of the BSL lang"age

Tbe full BSL language, wbich we did not formalize in its entirety, cootains a number of features that
l'does not bave, such as predicate definitions, function definitions, global variables, and real data
types. We will first specify tbe non-detel6inistic operational semantics of the BSL language il the
follon'ing sections, because we feel tbat tbe non-deterministic behavior of BSL prograns is easier to
understand and explain. BSL's implemeDtation on a real computer will be discussed subsequently.

2.4.1 Objects end their types

Tbe values tbat variables in a BSL program cao range over are called objecs. Eacb object also bas
an attribut€ associated witb it, called is type. Objecs can be scalar or aggregate.

Tbe scalar objects consist of tbe integer objects and tbe real objects. Tbe integer objecb consist of
integer oonstanb sucb as -2, 0, or 4, representing tbe integer numbers of the underlying bardu'are,
and the "unassigoed" constant, denoted by U. Tbe real objects consist of tbe real coDstants such as
-2.0, 0.0 or 3.0e-18 representing the floating point oumbers of tbe underlying bardu'are, and tbe "real
unassigned" oorutaDt" denoted by U_real.6 Tbe types of integer and real objecs are "integer" and
"real", respectively; tbey are called tbe scalar types. Tbe bardware implementation for integer uum-
bers must be two's complement for a BSL program to be portable. The recommended implementation
for floating poiot numbers is one of tbe fornrats of tbe IEEE standard 754, moreover, it is recom-
mended that integers and floating point numben botb bave tbe same size (expected to be tbe size of
one macbine word): 32 bit two's complement and IEEE singte precision on l nrini or rnicro, 64 bit
two's complement and IEEE double precision on a larger comput€r. A program-alterable bit config-
uration can be reserved for denoting an unassigned value on a coDventional computer, or a bardu'are
tag can be used for denoting unassignedness in a custom design. Tbe scalar objecs of BSL were
cbosen to facilitate tbe use of a simple, bard-wired instruction set for implementing tbe language on
a real computer.

Tbe aggregate objecs corsist of arrays and records. An array is a list of objects (rb xr ... x,-1), n'here
each of rs, r1r.. r,_1 bave tbe same typc tlp, and is type is "(array (n) Dp)", u'bere n is a posirive

We assunrc that a set of consunts thal has a onc lo onc (and perhaps onto) correspondcncc with the set of hardsare
Ooating point nunrbers is bcing uscd.



inreger. A record is formed not only from other objecs but also from a set of identifiers called record

lags. A record is a tistof alteraating record tagc an6 objec6, (mtxr "'fr,X.)' wbere D)0'D71' "'
m,are record tags tbat are all disdnct, aDd x!,...,r, are objecs tbat bave tYPes t)Pr' -..,|)!Pn, respec-

tivefy. Tbe type of sucb a record is "(record (mr tW) ... (m, tlp))". T5rpes of aggregate objecS are

called aggregate types.

Tbe type of an array of arrays, "(aray (nr) (array (nz)... (anay (n) rW) -..))", caD be abbreviated

as "(array (nr n2... nr) tlp)".

Examples of possible objecs aod tbeir tyPes are given below:

2
(1.0 2.0 U_rpal)
(xpos 10O ypos -200)

inte ger
(array (3) real)
(record (rpos integer) (ypos integer))

2.4.2 Operetiolts

In this secrion we will describe tbe possible operations that a BSL program may perform on objecs.

Operations take one or two objecs as operands and yield an object as the result, in case tbey are

defioed for tbese operands. Tbe dot operation is an exception, wbose second operand must be a re-
cord tag.

Operations on scalor objeas:

Bioary operations on scalar objecs:

+

a

/

add
subuact
multiply
divide

Tbese correspond to tbe aritbmetic operations tbat are implemented by tbe underlying hardu'are.
Wben borh operands are real objecs, tbe result is the real object tbat represents tbe floating poiot

number tbat is the resutt of tbe appropriate hardware operation applied to tbe floating poinl numbers

corresponrting to tbe operands; when botb operands are integer objecs, the result is the integer ob-
ject tbat represenrs tbe integer oumber that is tbe result of tbe appropriate bardware operation ap-
plied to tbe ioteger numbers corresponding to tbe operands. For inreger objecls, the uual operations
on two's complement, numbers with zcrodivide detectioo are tbe required bardware inrplementarion.
Overflow detection for all operations inctuding multiplication and divisioo is recommended. For real

objects, tbe operations as defined in the IEEE srandard are recommended, except that tbe denor-
malized operand, illegal operaod, illegal operation, exponent overflow, expoDeDt uDderflou', floating
divide by zero exceptions sbould all be detected. Wben tbere would be an enor coodition sucb as

division by zero, integer overflow, or aDy floating exception io tbe correspooding hardware operation,
or wbeo tbe types of tbe operands are unlike, or wben an operand is an unassigned constant' tbe result
of tbe binary operatioD is uodefined.

Tbe following bioary operarions accept only ioteger objects as operands, and yield ao integer object

result, if the resulr is defined. x and y refer to tbe left and rigbt operand of the operation, respectively'

shift x left by y bis
shift x rigbt by y bits
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Vo
&
I
A

yields tbe remainder wben x is divided by y
bitwise aDd
bitwise or
bitwise exclusive or

For the rigbt sbift operation, tbe cboice of arithmetic or logical shift is machine dependent. What
bappens wben tbe rigbt operand of a sbifting operation is negative or great€r tban or equal to tbe
number of bis in tbe hardware represeDtation of ao integer is macbine dependeot- Wben tbere is a
division by zero in tbe remainder operation, tbe result is undefined. BSL programs tbat use tbe
sbifting and bit operations are expected to be portable only between machines that we tbe two's
complement format for integers. provided that care is taken to nake tbe program depend oD a con-
stant tbat specifies tbe number of bis in a word

Unary operations on scalar objects:

int @Dvert a real object to aD integer object
(defined on reals, yields an intcger)

float @Dvert an integer object to a real object
(defined on intcgers, yields a real)

- bitu'ise not
(defined oo intcgers, yields an integer)

uaar1, - negarc
(defined on integers and reals, yields a result
tbat is of tbe seme rype as tbe operand)

Wben tbere would be an exception sucb as overflow during the corresponding hardware operation
wben a real object is converted to aD integer object, or when the smallest integer in the t'*'o's com-
plemeot format is negated, or wben the operand is unassigned, tbe n tbe result of the unary operation
b undefined. Tbe recommended implemenbtion for conversion between integer and real objects is
the one prescribed by the IEEE sandard.

Operations on aggrqate objects:

Tbe operations oD an aggregate object serve to extract a subpart of tbat object, Tbe only possible
operations are tbe binary operations sub and dot- Dot also requires a non-object operand, a record
tag. If a is an array (:6 x1 ..- rn-1), and /< is an integer object tbat is not U, sucb tbat 0 S t < n, tben
tbe result of sub(a,k) is x^ . Otbenrise sub(a,k) is undefined. If a is a record (mr xt ... m" r"), and if
rn is a record tag equal Lo mr, I S k S n, rben dot(arn) is xr. Otberwise dot(a,m) is undefined.

2.4.3 Slntax mtation and ledcal conventions

Tbe traditional Backus-Naur notation lNaur 63] will be used in describing tbe syntax of the BSL
language. We extend the Backus-Naur notation witb regular expression operators for convenience.
lD the syntax descriptions that are to follow, X' means zero or more occurences of X, X+ means
one or more occurrences of X, [X] means zero or one ocaurrences of X, X lY means eitber an oc-
curreDce of X or an occurreDce of Y. Tbe curly braces JXI are used, if necessary, for defining tbe
beginning and eod of an operand to +,', or L and imposing preccdence. Wbenever one of tbe special
cbaracters *,', L occur as a terminal symbol, we place it in double quotes.

The texical conveDtions of BSL reflect those of Lisp. A BSL program is a sequence of symbols raken
fromasetconsist ingof ident i f iers,reservedwords,tbespecialsymbols *,- , ' , / ,o/o,(1, )) ,  &, l ,
A, -, (, ), (-, )-, rr, !r ,ir, integer constants, feal constants, stfings, and parentheses, (,).
Tbe reserved words are: aDd, or, not, A, E, sub, dot, integer, real, dc, dm, dt" dx, dp, df, int, float,



silb, ib,
bave tbe

H, nil, options, LTSPMACRO, STRING. Identifiers, integer @nstants, and real coostaots
format defined below:

qineger_coutant> : : - [-]qdig't> +
qreal_consuur) ::r [{qdigit>+ . (digir;1[efi - | "+"]J<digit>+l
<identilier> ::r (letter)[4lettcrl lcdigit> I _ l '
(letter> ::-

a l  b lc I  d le I  f  I  e I  t r  I  i  I  j  I  k  I  I  In I  n I  o I  p I  q I  r l  s  I  t  I  u I  v l  w I  x I  y lz I
AlBlc lDlElFlG lHlr lJ lKlLlMlNlolPlolRls l r lu lv lwlx lYlz

(digi tz: : -O I  I  l2 l3 l4 l5 l6 l7 l8l9

Reserved words gannsl be used as identifiers. Identifien can be of practicatly arbiuary length and
all cbaracters are significant io distinguishing between two identifiers. Tbe allowable range of integer
and real constants is dependent on tbe undertying bardware.

As is customary for input read by Lisp, two symbols of a BSL program must be separated by ooe or
more btanks, DewliDes or tabs wben neitber of tbem is a parentbesis, but blankc, tabs or newlines must
Dot occur within symbols (suings, described below, are an exception to tbis rule). Commeots are any
sequeDce of cbaracters that begin with a semicolon, ;, and end witb a newline, and may occur within
a prograrD wherever a newline can occur.

A string, wbicb is an arbitrary sequence of characten enclosed within double guotes, is also corsid-
ered to be a symbol il cenain contexts. Blanks are aUowed withi-n a string. To enclose a double quote
or backslasb (" \") cbaracter within a string, precede it by a backslash.

2.4.4 Terms

We are now ready to describe tbe syntax and nondeterministic semantics of a BSL program. Tbe
Dondeterministic semantics of a synkctically legal BSL program will be described as aD interpretive
execution of tbe tcxt of tbe program. We will describe tbe language in a bottom-up fasbion, sbning
from its elemcntary building blocks, teru$. S/e will subsequently describe tbe atomic formulas and
finally tbe formulas of BSL. However, tbere wiU bave to be some circularity because of the recursive
Bature of function aod predicate calls.

In tbe following semantic descriptions, wbeD we say tbere is aD enor conditioo, it means tbat tbe
progrirm does not Erminate. However, a backtracking simulation of tbe program may repon the enor
and stop the program wben sucb :rD error causing action is simulated. For a BSL program to be cor-
rect, Do execulioo of it sbould result in iut error conditioo.

( term) : : -
lvalue>
<oonstant>
(<binop> <tenn> <term>+)
(<unopl <term>)
<function_call>

<f unction_call > : : - 
( qf unc tion_symbol ) < ternr >' )

( lvalue> : :-
<variable>
I (dot qlvalue; 4record_tag>+)
I (sub <lvalue> <term>+)
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<variable) ::- <identifier>
4record tag> ::- <ideotifier)
<consmnt> ::- <integer_oonstirnt>
<funcdon_symbol; : : - <identifier>
qbinop) ::-"*" | - | "t" | / | o/o I
<unop>::--  l -  l int  l f loat

I qreal_constant>

<<|>>l&l-1"Ia

A tcrm is a program construct that computes an object result U a term , is a vadable, its result is
tbe object whicb is tbe cunent value of tbe variable. U t is a constaDt, ils value is tbe object u'hicb
represenG tbe integer or floating point number conesponding to tbat corstant. Otberwise if r of tbe
forn Ql 4Ir), wbere / is one of tbe standard binary operatiorls described above, and {, t2 are terms,
first tbe results of r, and t2 iue computed in any order, aod tben the object wbicb is tbe result of t is
computed by applying/to tbe rcsults of I, and /u. As an exception, tbe second operand of tbe "dot"
operation is a record tag, and only the first operand needs to be computed. Tbe result of a term (/
rr) wbere/is one of tbe staodard uoary operations, is computed similarly. A term of tbe form U tr...
t,), n ) 2, wbere /is a one of tbe standard binary operations described above, is an abbreviation for

V ... V (f t, t) t3) ... t"). If an attempt to perform an opcration whose result is undefined is made at
aoy point along tbe execution of a BSL progrartr, ao enor condition results.

Tbe BSL language allows extending tbe srandard operations through function definitions. Tbe func-
tion symbol / appearing in a function call (/ 4 -.. t,), n > 0, must bave previously been declared within
a function definition, which has the general form:

(df ,f ((xr tW) ...(x, Opr)
(OUT xr*t t)pr*t)... (OUT r, 4p,)
(OUT r Up^+))
m

wbere 0 S k S n,xy...1J,,r are distinctvariables, t1qp7*..,D'p,+r are types, andFis aBSLformula
tbac assigns a value to rdepending on tbe values of 1, .-., r. { , ... r, are called tbe formal paraneters
of tbe function f. r is caUed tbe return variabte, whicb must bave a scalar type. There are two kinds
of formal parameters, IN and OUT. Formal parameters tbat bave aggregate types c:tn only be OUT
formal parameters, and tbey must be preceded by tbe keyword OUT. Formal parameters tbat bave
scalar types and that are preceded by tbe keyword OIJT, are considered to be OUT fonnal parane-
tcrs. Fonnal paraneters tbat bave scalar types and that are Dot preceded by the keyn'ord OUT, are
corsidered to be IN formal paraneters. To simplify tbe presentation, we are assuming tbat tbe lN
formal parameters x1,..., 11 precede tbe OUT formal parameters, in reality, tbey may be mixed io any
order. Tbe result of a function call (/t1 ... ,,) is computed as follows: Fint tbe resuls of tbe terms
t1 ,..., t,, called the actual parameters, :ue computed in any order, and tben discarded.T Then the fol-
lowing formuta, wbricb we will call G, is executed:

(E ((x'r tW) .- (x', 4pr)
(r' tw,*r))
(and (:- x'r lr)

(:-  xt^ t1)

h)

wbere x', ,... x'n r' are fresh variables, and .d is tbe resutt of substituting (in paraUel) x', for 11,... r'1
for x., lr*, for X111u..,t6 for x,, within F. We :Lssume tbat if tbe substitution of a tern t for some x in
Fwouldenclose a var iableyof I  in a subformula(Ey.. . )  (Ay. . . ) ,  (E ( . . . (y. . . ) . . . ) . . . ) ,1 ' is  f i rst  re-

This is lor cnabiing an implemcntation s,herc caU by rcfertncc. coupled sith sing,lc assignment. has thc same effcct as

call by name. asruming functioru arc frce from sidc effccts.
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nFmed Groughout thatsubforDnula by a fresh variable. Tbe result of QItr...t) is tben the value of
r' immediately before tbe end of tbe execution of 6, if and wben 6 terminates. ln case / bas no IN
formal paramet€rs, we agree tbat tbe (and (:- x'r lr) ... f') witin G is just .d.

Examples of terms:

(+r( '2(subai)))

(dot (sub eop n) salary)

(' r (factorial (- x 1)))

2.4.5 Atomic formula-s

Tbe atomic formulas iue tbe next bigber building block for programs. BSL atomic formulas consist
of assignmens, t€sts and calls to predicates that bave been previously defined.

<atomic_formula> : : r q25.ltoment> I <test> | 4predicate_calll

<assignment) ::- (:- qlvalue> <term>)
<test> ;;- (qrelop> <term> <t€rm>) I <tcrur>
( predicate_call) : : - ( qpredicate_symbol > <te rm >' )

<relopl : : - r -  I  ! -  |  (  |  >-  I  <-  |  >
(predicate_symbol2 : : - <idendfier>

Assignmen6 are executed in tbe conventional manDer. Assume / is an lvalue and r is a term. Tbe
leftmost variable x tbat appears in /is called is principal variable. Before an assignment (:- /t) is
made, tbe value of / is computed like a tenD, and it must evaluate to an unassigned consrant U or
U_real, or else tbere is error condition. Tbe subpart of tbe value of x that is selected by / is tben
replaced by tbe value of t, and x is set to tbe new object so obtained. t must yield a scalar object tbat
is not unassigned, or else tbere is an error condition. Tbe types of tbe values of / and t are guaranteed
to matcb because of the type cbecking rules, whicb will be described later.

A test is also executed in tbe conventional manner. Assume q and t2 are terms and relop is one of tbe
relational symbols -- 

(equal), !- (not equal), < (less Oan), ;- (greater tban or equal to), ;
(greater tban), or 4- (less tban or equal to). To execute (relop \ /2), First the values of l, and t, are
computed in any order. Tbey must yield scalar objects tbat are not unassigned, or else tbere is an error
condition. Filally the comparison is performed as defined by relop. If the comparison is determined
to be false, tbe program does not terminate. Tbe types of tbe values of t, and t2 are guaraDteed to
match because of the type cbecking rules. Wben a test consists of a single tenn tt, it is taken to be
an abbreviation for (!- t, 0).

The BSL language allou,s extending tbe standard set of predicate symbols tbrough defined predicate
symbols. The predicate symbolp appearing in a predicate call (p 4 ... /^), n : 0, must have previously
been declared within a predicate definition, which bas the general form:

(dpp ((xr tsp) ...(x, Op,)
(OIJT x*t tlp**r)... (OUTx,4p"))
n
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wbere 0 S e S tr, X1 t... r, are distinct variables, caUed tbe formd parameters of tbe predicate p,
I)tp1 , ..., tW, zre types, and F is a formula. Tbere are two kinds of formal parameters, IN aod OUT.
Formal parameters tbat have aggregate types cao only be OUT formal paranetcrs, and they must be
preceded by tbe keyrvord OUT. Formal parameten tbat bave scdar types aDd tbat are preccded by
tbe keyrord OUT, are corsidered to be OUT fonnal pariuneten. Formal parameters tbat bave scalar
typcs and tbat are not preceded by tbe kelnvord OUT, are coosidered to be IN formal parameters.
For easc of presentatioa, we trssume tbat the OUT formal paramet€rs come after tbe lN formal pa-
rameters {,...fi, in reality tbey may be mixed b any order. Tbe predicate call (p \ ... t,) is executed
as follon's: First tbe terms tr ... 1,, called tbe actual parameters, are computed in any order and their
values are discarded.t Tben tbe predicate call is replaced by a formula G of tbe form:

(E ((x 'r  Op) . . .  (x ' ,  Op))
(and (:-.r'1 t1)

(:- rtr /r)
ftt

wbere xtr ... x', are fresb variabtes and / is obtained by substituting (in parallel) .xt, for r1,..., x'1 for
x2, l1a1 for 4*1,...,1n for r, in F. We assune tbat if a subsritution of a tenn r for variable .;r in F would
enclose a var iableyof l in asubformula(Ey.. . )  (Ay. . . ) ,  (E ( . . . ( / . - . ) . . . ) . . . ) ,y is f i rstrenamed
tbrougbout tbat subformula by a fresb variable. Tbe predicate call is tben executed by executing tbe
resulring formula G. Io case tbe predicate bas no IN formal parameters, we agree tbat tbe (and (:-
x', t1) ..- r') wirlin 6 is jusr .C.

We will make some informzl remarks about tbe relationship of BSL ro logic along witb is operational
description. Tbese remarks were formally proved only for tbe l'subset of BSL, so for tbe wbole
language tbey are claims subject for future research. Eacb BSL predicate or function definition cor-
responds to an axiom about that predicate or function. Eacb BSL formula conesponds to a logical
assenion. A BSL formula bas tbe property tbat r/ any execution of it is successful , lhen the corre-
sponding :Lssenion is true about tbe progran variables at tbe point of success, provided that tbe
predicate and function axiorns are true.

For a test (relop tt t) tbe assertion is tbat relopbolds between trznd tr. For an assignment (:- I t),
tbe assertion is rhat I is equal to /. For a predicate call (p \ ... t,), tbe assenion is that p is true for r,

-.- 1..

In tbe examples tbat are to follow, assertions wiII be written using tbe notational conventions of an
AJgol+lass language and first-order logic. Tbe binary logical oorulectives in tbe assenions will have
the precedence &,V,+,<'+, listed in decreasing order, and will associate to Lbe right. The constructs
(Yx lR) F and (3x lR) 4 wbere .R is a restrictioD oD .x, will be used as abbreviatioru for (VxXR +
fl, and (3x)[n & F], respectively.

Examples of BSL atomic formulas are given below, witb correspondiag assenioos:

(:-  (sub a i )  0)
a[i]-g

(< i i )
i<j

(Greek TURING)
Greek(TURING)

This is for cnabling an implcmcntation rtrerc call by refcrrncc, coupled witlr single '.signment, has the same effcct as
caU by namc, essum.ing functions are frec from sidc cffccs.
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Wbere TURING is a preprocessor defined constant tbat abbreviates an integer.

2.4.5

A fonnula is a complete BSL program. A BSL program consists of a main formula optionally pre-
ceded by external definitions, function definitions, and predicate definitioos. A BSL program before
preprocessing Eay also cootain preprocessor directives. Conceptually, tbe BSL program is first
preprocessed, according to tbese directives. U tbe resulting progran is legal, tben is main formula
is executed intcrpretively as described by tbe noo-deterministic semantics of a formula, after per-
forming initializ31l66r for the global variables, if preseot.

(program)::r
< e xtcrnal_def inition >'
<f uoctioo_def inition)'
<predicate_definition>'
qmain_formulal

<main_formula> ::- <formula>

(formula> ::-
(atomic fonnula)

(and <formula> <formula> +)
(or qformula> <formula> +)
(not <formula>)
(A <variable> <init> (cond> (incr> qformulay)
(E <variable> <init> <cond> (incr> <formula>)
(E ({(<variable) (type>)l +) <formula>)
(if { <formula> <fonnula> } + (formulal)
(case 4term > { ( <integer_constant> + ) <formula ) | + <formulal )
(H <formula) (<lvalue)+ ) (beuristic>+)
(ib (4lvalue> +) <formula>)
(with (<lvalue)+) <formula>)

<init> ::r (tcfrD)
(incr> ::r (teilD)
<cond> ::- (Boolean_exp>
(heuristic> ::- <formula)

(Boolean_crp) ::r
<tcst>

(and <Boolern exp> <Boolean_exp)+)
(or 4Boolean_exp> <Boolean exp>+)
(oot 4Boolean exp))

(tfpe) ::r
integer

real
(array ( 4integer_constant> +; qtype ) )e
(record {(<record tag> <type>)}+)
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Tbe nondeterministic semantics of fornulas are described beloq'.

(and Fr 4) is executed by fint cxecutiDg F, , tben executin g F2. $od F, ... F.) for /< 2 3 is an ab-
breviation for (and Fr ... (anO Fr-r 4)...). Tbe asseniou correspoDding to (and f, F) is "rbe as-
sertion of Ft and tbe assenion of F7". Examples of formulas tbat rse "and", end corresponding
assertions are given below:

(and (fallible u) (Greek u))
lfallible(u) & Greek(u)]

(and (!- (sub queen n) (sub queen k))
(!- (- (sub queen o) (sub queen k)) (- n k))
( !-  (-  (sub queeD n) (sub queeo k)) (-  k n)))

[queen[n]Trqueen[k] &
queen[n]-queen[k] * n-k &
queen[n]-queen[k] * k-nJ

(and ( : -  r  0)  ( : -  x (1+ x)))
[x-0 & x-x+ l ]

Tbe last BSL formula will oever succeed (it is erroneous) because it violates the single assignmenr
rule.  Wewi l lbeusingtbeabbreviat ions( l+r)and( l -x) for(+.x l )and(-x l ) , respect ively.

(or Fr Fz) is executed by executilg one of F, ot F2. (or Fr ... f,) for /c > 3 is an abbreviatioo for (or
Fr .-. (or 4-r 4)...). Tbe assertioo corresponding to (or .Fi Fr) is "tbe assertion of F, or tbe assenjon
ol Fr". Examples of tbe use of "or", and corresponding assenions are given below:

(or (:- x TURING) (:- 1$QQRATES))
[r-TURING V x-SOCRATESJ

(imp (!-  i  j )  (< (sub a i )  (sub a j )))
li*j * alilcalill

wbere (imp x f) ls an abbreviation tbat stands for (or (not x) .p), and TURING, SOCRATES are
abbreviations for integers as defined by tbe preprocessor directives. Sucb unexpanded constants and
trracros will also appear in the examples to come.

(not Ft) acts like a built-io macro, and bas no operational meaning. Tbe "not" must be brought be-
fore tbe atomic fonnulas and tben elimilated before a formula can be execured, by only uing the
analogs of DeMorgan transformations listed belorv. Tbus "not" cannot occur in front of an arbirrarv
formula, as the Backus-Naur definition woutd impty.

(not (A x init cond rncrFr)) .;
(E x init cond incr (not F,))

(not (E x inir cond rncr fi)) ;,
(A x rnrr cond incr (not Fr))

(oot (and \ F)) +
(or (not Fr) (not f'))

t The intcgcr constants rntst be positivc.



(not (or Fr ̂ FJ) ,>
(and (not f,) (oot F))

(not (not Ir)) * Fr

(oot (- -  4 tJ)  *  ( l -  \ t2)

The relational symbols !r,(,)-,(r,) are similarly
tranSf Ormed ig[g r r, ) r, (, ), ( -, respectively.

(A x inil cotd incr Fr) is similar to tbe C "for" loop. Tbe old vafue of x is fint pusbed dowu, and x is
s€t to rzt . Tben, while cond is true, repetitively F, is executed and x is set to incr. T\e old value of
r is restored wben condis fioally fabe. cond is checked afterr is set to inil and each time after;r is set
lo incr. cond b evaluated from left to rigbt, until is trutb is determined (sbon circuit evaluation).10
Tbe top-levet terms of cond tbat are used for detennining its trutb, and the terms rnn rncr, must
evaluate to scalar objects tbat are Dot unassigned, or else tbere is aD error condition. Tbe assertion
corresponding to (A x init cond inq F) is "For dl integers x il tbe range defined by inrt, incr aod
cond , tbe assenion of F is true". Examples of uses of (A r ...), and rbe corresponding assenions are
giveo below:

(A i  0 (< i  n)  ( l+ i )  ( : -  (sub a i )  0))
(vi  |  0s i<n)[al i ] -ol .

;all elements of a[0..n-l] are 0.

(A j  0 (< j  n) ( l+ j )  ( inp ( !-  i  j )  (< (sub a i )  (sub a j ))))
(Yj l0sj<n)[i*j + ali]<a[il]

;a[i] is tbe least element of a[0..n-l] (il i e I0,...,n-l ])

(E :r rzrrr cond incr F1) is executed as follou's: Fint tbe old value of r is pushed doun, and x is set to
rn[. Tben x is set to incr zero or more times. cond must be tnre aftcr x is set to rnri and eacb time after
r is sct to incr, or else execution does not terminate. Finally F, is executed and tbe old value of x is
restored. cond is evaluated from left to rigbt, uDtil its tnrtb is deternrined (sbon circuit evaluation).
Tbe top-level terms of cond tbat are used for deternining its trutb, aod tbe terns rrir, ncr, must
evaluate to scalar objects tbat are Dot unassigned, or else tbere is aD error condition. This construct
is similar to tbe SELECTstatemeot of Mlisp2 lSmitb and Enea 73]. fte assertion corresponding to
(E x init cotd incr F) is "tbere exists an integer x in tbe range defined by rnrl, incr and cond sucb tbat
the assertion of F is true for that r". Here is an example of tbe use of (E x ...), and tbe corresponding
assenion:

ln l', boolean cxprtssions rrc fuLly cvaluatcd, whcreas in full BSL. they are shon.circuit evaluated. Similarly. fuU BSL
has a morc Estriclivc synux rhan L', c.g. (sub I 2) is not a legal ternr. Thcse dcbils arc not of crucial thcorcricai rm-
portancc, and g'cre lcft out of l'in ordcr to simplify iu formalization-
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(Eio(<iP_SIZE)( l+i)
(and (-- I (dot (sub P i) child))

(:- y (dot (sub p i) pareat))))

(3i | 0 S i<P_SIZE)[x 
- p[i]. chitd & y- p[i]. parentl

;y is a parent of r

(E ((xr Op) --- (xt tn)) Fr) is executed by pushiog down tbe otd values of x1,... x, , and for eacb
i: .1,--.*' setting x/ to a-u object of type t1p, all of whose scalar subparts bave tbe unassigned vatue
of rbe appropriate type' e:ecuting Fr, and fiially restoring tbe old values of x', ... x.. Tbis coostrucr
b similar to tbe Algol begin-eod btock with local variables. Tte assenioo conesponding to (E ((xr
th) -.. (x. 0a)) Fr) is "Tbere exist x, of type Upr , ... x, of type fp1 sucb tbar rhe asserrion of F, is
tnte for xr --. rr". Examples of the use of this construct are-given below, with corresponding as-
sertions:

(Ai01qiD)( t+i)
(E ((d integer))

(and (or ( : -  d 0) ( : -  d l ))  ( : -  (sub a i )  d))))
(Yi  losi<D)

(:ld J type(d)-integer)
lld-0 V d- ll & a[i]-61

;tbe elemens of a[0..n-1] are eirber O or 1.

(E ( (least_elem integer))
(Ei0(<in)( I+i)

(and (A j  0 (< j  n)  ( t+; ;
( inp ( !-  i i ;

(< (sub a i )  (sub a i ))))
(:r leasr_clem (sub a i)))))

(treast_ele m I type (least_ele m) - iplsggl;
(3 i  losicn)

[(vj f oSicn)[i*j + a[i]aa[]l & teast etem-a[iJ]

;a[0..n-t] has a least elemenr

Anotber example of tbis begil<nd construct can be seen in tbe eight queens prognm given previ-
ously.

A construct of the form (A x init cond incr F), not iocluding tbe F, is called a unir.ersat quantifier. A
@nstruct of tbe forur (E x init cond incr F), not includi.og the F, is called an existential quanrifier. x
b cafled a quantifier index in sucb a conrexr. A construct of the form (E ((rr tlm) ... (x,0p^)) F), not
including tbe.F, is also called an existenrial quanrifier.

(iI Fr F2Fr) is tle deterrninistic cboice consrrucr of BSL. It is equivalent to

(or (and F, F2)
(and (not .Fi) FJ),
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wbere "not" is tbe macro described above. F, must be free of assignoents or predicate calls. For
tr ) l, (if 4 ... &*r) is an abbreviation for (il F, 4 (il... (il F:"_r Fz, Fz,*)...)). Here is an example
of if, with tbe corresponding assenion:

(if (-- r 0) (:- y l) (:- y (' r (factorid (l- r)))))

[x-0 & y- I V r*0 & y-x'factorial(x-1)]

A formula of tbe form (case t (ri ...) .Fr ... ( ... tr) F, F*r) is equivalent to

(or (and (-- , r;) ;.t)

(and ('- , tr) F")
(and (!-  I  l )

(!- I r*)
f'*r))

The integer constants ri, ..., ri must all be distinct- An exanple of tbe use of case is giveo below, with
tbe corresponding assertion:

(case root
GJTFA SOL) (:- cbord_kind N,IAIOR)
(SI) (:- cbord-kind DIMINISHED)
(:- cbord kind MINOR))

[root-lJf & chord_kind-MAJOR V
root-FA & chord kind-MAIOR V
root-SOL & cbord_kind-lvlAlOR V
root- SI & cbord_kind- DJMJNISFIED V
root#UT & root*FA & root*SOL & root*Sl & chord kind-MINORI

A formula of tbe form (H .F (rr ... lr) Fr... .Fo) is executed by executing F. The beuristics Fr,... ̂ F6 are
used for guiding *1s dgterministic simulation a.lgoritbm so tbat tbe "bener" executions of .F are sim-
ulated first- Heuristics have no effect on tbe non-deterministic semantics of a BSL formula of the
form (H F...). Heuristics will be discussed later in tbis chapter. The assertion corresponding to (H
.F...) is tbe assenion for F.

A formula of tbe form (ib (rt ... tr) .Fi) is executed by execuring Fr. The (ib...) Dotation is an indication
tbat during the deterministic simulation of a BSL program tbe intelligeDt backtracking tecbnique is
to be used for analyzing a possible failure of F,. The intelligent !3sf,u3sking simulation of a BSL
fomula wiU be discused later in this cbapter. The assertion corresponding to (ib (\ ... D F) is tbe
assertion for F.

2.4.7 Rules on type checking

To be legal, tbe text of a BSL program bas to comply witb certain type-cbecking, scope and otber
nrles, some of whicb are described below. Funber rules u'ill be described togetber u'itb the predicate
and function definitions.

A subformula (Er ...), or (A x...) declares tbe type of tbe variable x as "integer" witbin any enclosed
t€rm. A subformula (E (...(x ttp)...) F) declares x to bave tyry W within F. An external definition
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starement (dx x t1p...) appearing in tbe beginning of tbe progran declares x to have type t)p wi$in
tbe formulas occurring within function definitions and predicau definitions, as well as u'ithin tbe main
formula. Tbe fuoction definition (df p (... (tOU-n x W) ... ) F) or tbe predicate definition (dp p (...
(tQu-fl x W) ...) F) declares x to bave typ typ within.F. Giveo any variable r occurring in any term
witbin tbe main formula 61 lpithin the formulas for tbe predicate or function definitions, tbe type of
tbe variable r is determined as follows: if tbere is an enclosing subformula (E x ...), (A r ...), (E (...
(x tlp)...) ...) tben tbe type of x is tbe type declared by tbe innermost of such subformulas, otberu'ise
if tbere is an enclosing function or predicate definition wbose header declares x, tben tbe type of x is
the type declared by tbat beader, othenvise if tbere is a dx sutement tbat declares.x , tbeD tbe type
of x is tbe type declared by tbat dx, otberwise x is undeclared and the program is illegal. Duplicarc
declarations for tbe same variable x in more tban one dx statement, or in tbe cont€xt (E (... (.r tfA)
... (x rWz)...) ...) or in tbe beader of a predicate or function definition of tbe foro (... ([OuT] ,r
Op) -.(tOUn / U'p)... ), are illegal.

Suppose t is a term. If I is a coDst:rnt, tben its type is eitber integer or real, as determined by tbe form
of tbe constanu U r is a variable, tben its type is detcrmined as described above. If t is of tbe form
(sub 4 /2) wbere r, has type (array (n) 0p) and l, bas type integer, tbe type of t is t1,p. U r of the fonn
(dot rt rn ) wbere 4 has type (record (m, ttm) ... (m, tSp)) and n is a record tag equal to tnp
I S f t  S n,tbeDtbe typc of tbt lpr.  Ut isof tbe form Vqt),or( f t r)  wbere/ isastandardoperat ion
defined on scalars, the type of t is tbe type of tr, except for tbe cases wbere / is (int tr), whicb bas type
ioteger, and (float t,), whicb bas type real. The type of (f \... /"), wbere/is a function symbol, is the
type that is declared for tbe retum variable of /. Tbe argurnenb of a standard operation nrust bave
of tbe number and types acceptable for sucb an operation Tbe number and types of the actual pa-
ramet€rs in a function call must marcb tbe number and types of tbe formal parameters declared in tbe
function beader in tbe corresponding function definitiou. Tbe actual parameters corresponding to tbe
OUT formal parameters must be lvalues.

Tbe types of tcrms tt and t, appearing in a test of the form (relop 4 12) must be botb integer or botb
real. Wben a tcst comprises of a single term, tbe type of tbat tcrm must be integer. Tbe types of the
left-band side and rigbt-band side of an assignmgnt must be both intcger or both real. The number
and types of actual parameters of a predicate call must matcb tbe number and types of the formal
parameters of tbe conesponding predicate definition. Tbe actual p:rf,ameters corresponding to OUT
formd pariuDeters must h lvalues..

Tbe tcrms inil, incr in tbe context (A x init cond incr F) or (E x init cond incr I) Dust bave type inre-
ger. init cannol contain occurrences of J.

At any point in a BSL program, tbe set of variables whose types can be determined at tbat point, tbe
set of record tags tbat occur within the types of sucb variables, tbe set of function symbols knou'n at
that point, and tbe set of predicate symbols known at tbat point, must all be disjoint. If a record tag
app€ars in tbe type of a variable known at a given point, it cannot appear again in tbe same type or
in tbe type of another variable koown at tbat pointtt

2.4.8 AbbreYirtiors for lvdues

Some furtber abbreviations are possible for lvalues, that are not noted in tbe Backus-Naur fonns.
(sub /rt...t) can be abbreviated as (/4 ...t ), and (dot /m ) can be abbreviated as (rn l), wbere m is
a record tag, I is aD lvalue, and 4,..-[ are tcrms. Tbus

(site (s n)) may abbreviatc
(dot (sub s o) site )

Thls resrrioion about ncord rags (currently stemrning (ron C), b not inhcrcntly ncccssary in BSL, and rnay b'e removed
in the future.
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((pitcb (cborG n)) soprano) may abbreviate
(sub (dot (sub cbords n) pitch) soprano).

Tbe constnrct (with (4 ... t ) Fr), wbere Iy.. \axe lvalues aod 4 is a fonnula, is inteoded for allou'ing
convenient abbreviations for referring to tbe elements of ccrtain arrays of records within Fr. Eacb
of {, ..., li, is expected to be of the form (sub a n), or abbreviation tbereof, where k > 0, n is eitber
a variable or tbe keyword "nil", and a is an lvdue wbich has type "(array (l) (record ...;)". Assuming
tbat tbe (record ...) section of this type bas tbe following details:

(record (p scalar_t1per)
(g (anay (ti ....1-) scalar_ryry))

) ,

tbe following abbreviations are possible within Fr:

abbreviation
pi
(p x)
(E\---  y^)
(q x h . . -y^)

stands for:
(p (a (-  n i ))) ,  i -0,1,. . .
(p (a x))
(S (a (-  n i )))r t  . . .1;) ,  i -0,1,. . .
((q (a x))  x . . .y^)

Wben n is nil, tbe abbreviations involving p0, pl, ..., q O, ql, ... are not allowed.

Here is an example of uliliz3liss of "with":

(E ((cbords (array (N) (record (p (array (4) pitch_type))
(root pitchname_type)

- . . ) ) ) )
(An01anN)( l+n)

(with ((cbords n))

(and (!- rootg rootl)
(Ak0(<kn)( l+k)

(!- (p k bass) (p0 bass))))

. . . ) ) )

wbere pitch_type, pirchname_type are enumeration types. Tbe inoer subformula (and ...) is an
abbreviarion for:

(and (!- (root (cbords n)) (root (cbords (1- n))))
(Ak0(<kn)( l+k)

(!- ((p (cbords k)) bass) ((p (cbords n)) bass))))

2.4.9 hedicate definitions

A predicate synbol is a.sociated witb a formula via a predicate definition, wbicb bas tbe follou'ing
form:



<predicate_definition; : : -(dp <predicate syubol> <predicare-beader> {<formula> I nlt}l

4predicate_beader> : : - 
( { (IOLfi <variable > <type> ) l' )

A predicate symbol must be declared before any predicate calls employing tbat symbol are used. A
predicate symbol is declared as sucb within its own defining formula, and all formulas that textually
follow tbe predicate definicion, tbus a predicate can call iself. The keyvord nil in place of the formula
b used to indicate a forward declaration, whicb is required for the case of two or rnore EutuaUy re-
cursive predicates, or to indicate an externally compiled predicate. If tbere is more tbao one predicate
definitioo for tbe same predicate symbol, then tbere must be at most two, aDd tbe first one Eust bave
nil in place of a formula, and the beaders of the two definitions must be ideotical. A predicate defi-
nition (dpp ((tOUn \ W)... (tOlnl x^yp)).F) conesponds to tbe followiog axiom about p: "For
all x1 of tjpe Wy... x" of type Op^, il tbe assenion of Fis true for x,, ... x", tbenp (xr,...J,) is true".
Tbe case wbere the predicare definition refers to global variables will be discussed later.

Examples of predicatc definitions, witb corresponding arioms:

(dp buman ((OUT x name))
(or (:- : TURING) (:- x SOCRATES)))

(Yr l type(x)-name)
[[x-TURING V x-SOCRATES] + buman(x)l

Note that "Dame" is an abbreviatioo for "inteper".

(dp fact ((x integer) (OUT y integer))
(or (and (--  1Q) ( : -  y l ) )

(E ((z ineger))
(and (> x 0) ( fact ( I -  x) z) ( : -  y ( .  x z))))))

(Yx I type(x)- integerXYy I type(y)-integer)
[x-0 & y- l  v (3zl type(z)- intcger)[x)0 & fact(x- l ,z) & y-1r2] l

+ fact(x,y)l

2.4-lO Funcdondefinitioru

A functioo symbol is associated witb a formula
form:

<function_definition> ::-

via a function definition, wbicb bas tbe foUor+ing

(df qfuncrion symbol> <function header> {<formula> Inil})

<function beaderl ::- ({([OIJT] <variable> <rype>)1. (OIJT <rerurn_variable> <type>))
<retum_Yariable> : : - <variable>

Tbe variables tbat appear in the beader of a function definition consist of tbe formal parameters of
tbe function, followed by tbe return variable whjch is intended to represent tbe value to be returned
by tbe function. Tbe return variable must bave a scalar type. Tbe fornrula withil a function definition
defioes tbe relation between tbe formal parameters and tbe returned vatue. A function symbol must
be declared before it is used in any function call. A function symbol is considered to be declared
withi! its own defining formula, and in all formulas tbat occur after its definition, so a funcrion can

11



call iaelf. Tbe kelnvord nil can be used in place of $e defining formula, for indicating an externally
compiled C or BSL functioo, or for indicating a forward declaratioo il tbe case of mutually recursive
functions. If there ls a duplicarc pair of function definitioos for tbe same function symbol, then tbere
must be at nost two, and tbe fint one nlust, bave nil in placc of a formula, and tbe beaders of tbe two
definitions Dust be identical. A formula is said to be determintstic ifl it does oot contai! assignmenrs
in the oon-final subformula of an "(or...)", or within aD'(E x ...)", and it does Dot ooDtaiD predicate
cdls. Tbe outermost "(or...)" withio tbe expansion of an "il'' or "case" statemeot does not count
as an "(or...)" in tbis coDtexl Tbe formula tbat defines a function must b dercrministic. Tbe de-
fining formula for a funcdon cennot contain assignments to OUT formal parameters or global vari-
ables, except when every call to tbe functioD appears wbere a predicare call could appear,rr but not
witbin tbe non-final subformula of an "(or...)" or wi6in aD "(E x ...)". Tbe outermost "(or ...)" iD
tbe expansion of an "if' or "case" statement does uot count as an "(or ...)" in tbis context. The
function definition (df .f ((xr ttp) ... (x, W) Q rW,*)) F) conesponds o tbe following axiom about
f: 'Eor all rt of Wpe Wv.. x" of type typ,, r oI tyry W,+t, if the assenion for .F is true for 11,...Jn, r,
tben /(x1,...J,)-r is true". Tbe case wbere tbe function definirion refers to global variables n'ill be
discussed later.

Here is an example of a function definition, witb tbe corresponding ariom:

(df factorial ((x integer) (OUT y integer))
( i f  ( --  x 0) ( : -  y l )  ( : -  y ( 'x ( factor ial  ( l -  x))))))

(Yx I type(x) - intcger) (Vy I type(y)- integer)
[[x-0 & ]-l V xr.0& y-x'factorial(x-1)l p factorial(x)-yl

2.4.11 Globd variables

A global variable can be declared and possibly initialized via a dx statemeDt" wbose syntax is as fol-
lOwS:

<extcmal_definition > : : -(dx 4variable) (type) [ (initieliuery I not_tagged l] )

(initiali's1; ;;- (4constant>+) | nil

A dx statcment makes a variable and its type kno$"n to all predicate and function definirions, as well
as tbe main fonnula. Tbe initializer may be an unstructured list of constanb, wbicb are used for
forming tbe consecutive scalar subparb of an object tbat is given as tbe initial value to tbe variable.
Tbe number of constans in tbe initializer must matcb tbe nunrber of scalar subparts of an object of
tbe given ty'pe. Tbe type of each constant must matcb tbe type of tbe corresponrling subpart of tbe
object to be created. "Dot_tagged" is an indication to tbe intelligent backtracking compilarion al-
gorithm tbat a tag is not to be generated for this variable. To specify "not tagged" witbout initial-
ization, nil can be used iDstead of tbe list of constaots. If a list of consunts is given, tbe variable is
set to tbe object specified by tbat list at tbe stan of execul.ion; otbenrise rbe variable is set ro an ob-
ict of rbe appropriate type all of wbose scalar subparb are unassigned at the start of execution. As
a special notational convenience, when tbe type of tbe variable declared within a "dx" is (array (n,
nz ... n) ...), & > 0, and a list of constants is specilied, tbe keyvrord "nil" can be substituted for n,,
whicb will cause tbe value of n1 to be determined from rhe lisr of corstanb.

BSL prograrns witb global variables also have assenions ccirresponding to tbem, whicb are true at the
point of success wben any execution of the program succeeds. U the variables declared wirhin dx

ie. q'hcrc thc function call is e lest comprising of e singe term.
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statements are xt witb tYlze t)pt,... x, with lpe tlpn, then $e assertion corresponding t6r a comptete
program u'itb global variables, function definitions, aod prcdicate definirions isl'Thereexist x, ofiype
Wt .-. x" of type fp" sucb tbat [xt,...,x" are equal to tbeir initial values if given, and lif tbe axioms for
tbe function definitions and predicate definitions are tme, rben tbe assenion for tbe main formula
b true]]".

2.4.12 Enurneretion tpe definitions

Enumeration types caD be defined via tbe dt starement, wbose syntax is as follo\r's:

(type_definirion> :: -
(dt 4enumeration-type) ({<enumeration_coDsurnr> [qinteger_constanr>]l+))

<enumeration_type> : : - <identilier>
(enumeration_ooDstaDt; : : - 

qidentilier>

Eoumeration tyPes arc at. present little more than a preprocessor facility for defining constants. A
statement of tbe form (dt tlpe-narne (enum_cons\[ir]... enum_corzstr[iL]D 

""*ir 
tbe identifier

We-name to be declared to the compiler as aD eDumerarion type, and subsequently that identifier
caD apPear as an abbreviation for "integer" within types. Tbe dt slaremeDt 

""us.j 
the identifiers

enum-conslr' ... enum-co6tt to be associated witb integer values. Tbese identifiers are normally
assigned consecutive values, so tbat tbe fint identifier is assigned tbe vatue zero, and eacb subsequeni
ideotifier is assigned a value tbar is one more tban the vatue of tbe preceding identifier. But if an
identifier is fol.lowed by an integer, its value is defined to be that inreger. The identifier caD rbeD
appear as an abbreviation for tbe i.r:teger constant that it stands for within terms.l3 Hou,ever, tbe
intemal input-output roulines can read into aod prirt from a variable tbar was dectared to bave an
enumeration type in symbolic form.

All enumeration const"ns occurring within tbe program must be distinct. A given enumeration type
ca[not be declared twice. Enumeration types must be declared at tbe beginning of a program, before
any external definirions.

2.4.13 Macro end con$ant definitions

BSL bas preprocessor facilities in the form of constant and macro definitions, and inctude starcments.
Tbe syntax of tbese are given below.

<constant_definition> :.: -

<macro_definition > : : 
-

(dc {qconstanr pame> alispform>}+ )

(dm 4macro_name I ( qmacroJaramerer>. ) (lispforml )
| (dm <macro_name > LISPMACRO <lisp_funcrion> )

(include_statemeDt> : : - 
(include <fileoame>)

Thc rcason rtry r rlpc-checlcd cnumcration rypc Bas nor rsed in BSL was bccausc in the nrsic applicarion. the Eri-
ablcs that we wish to declarc as enumcration tlges tcnd to havc cornplet nun*rbal rctarionshlps. For cxample. t*o
pitchcs can bc subtracrcd giring an intcrval (a fact that onc *ould s'ish ro dcclarc to a compilcr as inrcnal=pirch-pirch),
the-rcmaindcr wten a pitch is divided by scvcn gives: pirch name (r'hich onc would *.ish to declare as
pirch=?'ocrave-numbcr+pirch-name). Horlcvcr, wc qrrulol adct tqo pirchcs. Ratlrer than adopr lhe inelcgant sol-
ution of convcning enumcraljon t)?cs lo intcgers and back. e'e chosc thc prcsent unsrructurtd solurion, s,hjch allos.s
onc 1o do evcrything, but impl,icilly rcquircs that the prolrarnmcr enforcc his or her os,n disciplinc. Incorporalng
Ada'like featurcs such as limitcd privatc t1pcs, and overloading of opcrators could also have bcen a possible approaclr
Ildrbiah ct :1. EOJ.



<macro_Dam€) !:r <identifier>
<constant name> ::- <identifier>
<macroJarameter> : : - <identifier>
<filename> ;;- qidenrifier) | (stringl

A <lispfonn> refers to a lisp list or a lisp atom. A <lisp_fuoction> refers to a lisp function of rhe
form "(lanrMa (x) ...)". A oonstant or macro definition can occur as a top levcl list in tbe program,
and is effective in tbe program text tbat follows it- The topJevel lists or atoms occurring in the pro-
gram :ue fully macro-expanded, conceptually before any other processing, according to tbe constaot
aDd macro definitions knonn at tbat poinl (However, an implementation may prefer to expaod
gtacros and constaots only wben it is necessary to expand tbem, so tbat, e.g., enor messages will have
more conelation witb user written code.) Macro-exp"".ion is performed as follows: Tbe macro-
expansion of an atom r tbat bas been defined as a oonstant via (dc x lispform), is tbe macro-
GXpansisp of lispform . The macro expansion of a list (p tt ...1,) wbere p is aD identifier defined as a
Eacro via

(dm p (rr ...r") Ibpform),

b tbe macro-cxpansion of the list obtained by substituting (in parallel) t, for :1, ... I, for .rn in
Itspform. Tbe macro parameers xb...Jn must b€ distincr The macro cXpznsios of a list (p t, ... t^)
wbere p is declared as

(dm p LISPMA CRO I Ltp Junct ion)

btbemacro€Ipansi6aof tberesult  ol lspJunct ionapphedtoQt/r . . .  1 ' , ) ,wbere/1 , . . . / ' ,are[he
incomplete macro expansions of l, , ... t , respectively. (An incomplete Eacro expansion of a lisp form
is obtained by repeatedly expanding tbe lisp form while it is an identifier whicb bas a constant defi-
nition that is a list, or it is a list wbose first element is an identifier whicb has a macro definitiou. unril
no such €xpan(lens are possible.)to Tbe macro expansion of an aton tbat bas not been defined as a
oonstant is itseU. Tbe macro exparuion of a lisr (\ ..- t.) wbere r, is not an identifier defined as a
ll!rcro, is tbe list (/,... /.),wbere /|,... /"are tbe macro ctpansiqns of r1,... t, respectively.

Tbe statement (include filenome) is replaced by tbe contcnts of tbe file filename, and can (rccur any-
wbere among tbe top level lists in tbe program. U tbe flle filenarne cannor be found, a standard place
b searcbed for it, but it must ultimately be accessible. It is recommended tbat all programs sbould
start witb tbe statement (include stdnac), wbere stdmac is a file in the standard place rhat defines
commonly rsed macros, I/O functions, and tbe enumeratioD type boolean.

2.4.14 Input - output

BSL also bas a few standard input-output facilities, wbich will be described below. Hou'ever, I/O
operations are Dot part of the non-deterministic semanLics of BSL, and BSL formulas tbat contain
I/O operations do oot bave assertions corresponding ro tbem. Tbe semantics of sucb formulas n'ill
be described later, in tbe section on the deterministic semantics.

Tbe BSL program bas an input file variable and an output file variable. Tbese are initially bound to
tbe terminal input aDd t€rmind output, respectivety. The builtin predicate "(infile filename)"
("(outfile filename )") biods tbe input (output) file variable to tbe file specified by the srring
filename. Tbe file mrst exist and be accessible. If tbe infile (outfile) predicatc is being executed for
filename for tbe fint time since tbe beginnisg of tbe program, or since filename was last closed,
filenanc is opened for reading (writing) at tbe beginning, othenrise lgsding (writing) continues from
wbere it was left at. Tbe call "(infile "stdin")" ("(outfile "stdout")") resets rbe input (outpur) file
variable to tbe terminal. Tbe builtin predicate (closefile filenante) closes tbe file specilied by the

A full macro exparuion of an argument /, an be obrained h a xer-rritten lisp macro via thc function (fmcxpand /,).



suing filename, whicb tuust not be "stdin" or "stdout". U lilenamc is tbe current input (output) file,
rbe input (output) file is reset to rbe erminal.

Tbe foUon'ing synopsis lists tbe available built-in functions for reading tbe input file:

(df readint ((OUT x inager)) nil)
(df readreal ((OuT x real)) nil)
(df readenum ((z enumeration type) (OUT x z)) nil) ;Don-standard declaration
(df readchar ((OUT x inager)) nil)
(df readln ((OUT x boolean)) nil)
(df eof ((OUT x boolean)) nil)

Tbe function call "(readint)" ("(readreal)") returns tbe next inuger (real number) in rbe input file,
after skipping newlines, tabs and blanks. Tbe function call "(readenum tlpename)" skips any
newlines, tabs and blanks and reads tbe next identifier in the input file, whicb must correspond to
one of tbe enumeration constans declared for enumeratioo type tprume, and returDs tbe eoumer-
ation constant corresponding to it- Tbe functioo call "(readcbar)" reads tbe next cbaracter in the
inpur and returns its machine-depeodent integer value. "(readln)" reads tbe input up to and including
tbe next newline, discards what was read, and returns tme. Tbe value of "(eof)" becomes true after
aD attempt is made to read beyond tbe eDd of tbe input file.

Tbe buiftin predicate (cprintf format_string xr ... rr) takes a format string enclosed within double
guotes as tbe first actual parameter aDd a zgro or more terms as funher actual parametcrs, aod priDb
tbe terms according to the format string on tbe output file. cprintf always succeeds, and is identical
to lbe "printf'function in C [Kernigban and Ritchie 78]. Typical format string items areo/od for an
argumeDt of type integer, and o/of for an argument of type reat. The symbolic striog corresponding
to a term r that would bave an enumeratioD type caD be passed to cprintf as (STRING .r), and can
be printed using tbe format itcm o/os. Tbe backslashes to be passed to "prinl.l-'must be written tn'ice
within the format string; tbus a newliDe must be writren as " \ \n". As an example, assuming that x
has type boolean, y has type integer, and z has type (array (10) real), tbe call

(cprintf "x is 7os, y is o/od, z[0]+2.0 is o/of \ \n" (STRING x) y (+ (z 0) 2.0))

lllay cause

x is false, y. is -2, zt0l+2.0 is 1.000000

to be printcd, follou'ed by a newline.

Tbe builtin predicate (dump l), wbere / is an lvalue, always succeeds, and prints tbe names and values
of scalar subpars of / in a manner similar ro tbe PUT DATA statement of PL/\. Tbe values of vari-
ables or subpars of variables tbat bave been declared witb enumeration types are printed uing the
appropriare enumeration coDstaDts, if possible. For example, if x has type boolean and y has type
(array (2) integer), tben tbe calls (dump x) and (dump y) may cause lhe lines "(-- x false)" and
"(-- (y 0) -2)","(-- (y 1) 0)" to be printed, respectively. Tbe builtin predicate (put i') writes out
the values of subparts of I in a m2nner wbicb can be read back by tbe builtin predicate (get I). / need
Dot bave a scalar type in tbese predicate calls. (dump / n), (put / z) and (get / n) are another way
of calling these predicates, wbere / must bave an array type and a must bave an integer type. In this
case, tbe scalar subparts of / are read or written with the first subscript of / varying between 0 and
n - 1. Standard macro definitions for reading or writing more tban one lvalue with tbese predicates
are described in Appendix D.



We have Dot iDvestigated the formal properties of input-output operations, or tbe assenioDs corre-
sponding to them. However, tbe logical assertioD correspondiog to a program tbat reads a fixed input
file cao usually be found by replacing iDput operations with equivalent assignments, or initializations.

2.4.15 Compileroptiotu

Compiler options may be specified in a top-level list using tbe following syotar

4option_statement> ;;- (options {qoption name> 4lispform>}+)
4option narD€) i:r <identifier>

Compiler options are also associated with tbe deterministic, ratber tban tbe Don-determiDistic se-
DaDtics of BSL, and are ursed for specilying more information to a compiler tban is provided in the
BSL program itself. Options are in general implementatioodep€Ddent- Tbey cao be used for pur-
poses sucb as dlocating desired variables in registers, enabliog an intelligent backtrackiog simulation,
enforcing a compiler optimization, or controlling tracing. Appendix D lists tbe options available in
tre present compiler.

2.5 The implementetion of BSL on a deterministic computer

2S.l The bacltecking sementics of BSL

A BSL program witb a main formula of tbe form (E ((xt tSp) ... (x, ttp)) F) is implemented on a real,
dercrnrinistic computer by means of a modified backracking technique that u principle attempts to
simulate all possible executions of tbe formula, and prins out the values of x1,... x. just before tbe end
of every execution that turns out to be successful.

Tbe tccbnique for att€mpting to sinrulate a// possible executions of a BSL program is very simple.
Only tbe cascs wbere a BSL program makes a non-detcrministic cboice, and certain cases wbere a
BSL program decides "not to tcrmiDate," need to be considered. Otberwise, a particular executioD
of BSL program is simulated as described in tbe scction on tbe non-deterministic semantics of BSL.
We will assume tbat tbe deterministic simulation algorithm is able to pusb down tbe state of a par-
ticular partid erecution on a stack at any non-deterministic cboice point during tbe simulation of tbal
execution, so tbat wben tbat state is restored, one can continue simulating tbat partial erecution at
tbe same point, after making a different choice tbao the one that was made in tbe previors simulation.
One stars simulating tbe main formula (E ((xr 0p) ... (xt tSp)) F), witb an initially empty stack, after
perforrring initializations for global variables. Whenever a formula (or Fr Fz) is to be simulated, one
pusbes dorxn information tbat will enable resaniDg by simulating F2, aDd one simulates F1. Within
a formula (E r init cond incr F), wbenever one has to cboose between simulating F and setting r to
racz, one pusbes down informatioo tbat will enable restarting by setting x to lacr, and one simulates
.F.r5 Wbenever a relational test fails, or wbeo cond fails in tbe coDtext (E r rnir cond incr F), one
backtracks, by popping tbe information about tbe Dost recent cboice point from tbe stack, and con-
tinuing simulation from tbat poiot- Similarly, oDe also backtracks eacb time after the top-level for-
mula (E ((xr tW) ... (x, Op)) F) is successfully simulated and 11 1... x1 are printed, in order to get more
solutions for x1,... :1. Simulation continues uDtil oDe tries to pop somefting from irn enpty stack.
Wben an error condition, sucb as double assignment is detected, one stops the simulatioo. At tbe end
of tbe simulalioD, "Do" is printed if no executions were successful, otberu'ise "yes" is printed.

Notc drat the unspccified order of computation of actual pat:amerets of a lunction or predicate czll, or thc unspecified
ordcr of compuotion of argumcnts of a sundard operation, does not cotlstitutc a non-dctcrrninistic choicc. These *'ere

kft unspccificd rncrrly to allon e compilcr to dctcrminc a fircd order that is optimal in somc scnse ICoffman and Sethi
E2l.
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A main formula that does not bave tbe form (E ((xr tW) ... (x^ tW)) ...) is sfunulated in tbe same
E2nner, erc€pt tbat nothing b printed wben ar execution is succcssful.

A modification is made to this basic tecbnique for the case of a prcdicate-call aod assignment free
subforrrula .Ft in the oont€rt (or fi 4), or (E n ... Fr): Immediately after a subformula F1 in sucb a
oontext is successfully simulated, tbe most receot cboice poiDt on tbe stack is discarded (whicb would
be the cboice point for restaning at 4, or at 4 with a dilferent value of n, assuming tbe modificatioo
is unilorrrly applied).r6

Tbe semantics of I/O fuoction calls and I/O predicate calls during tbe backtracking sioulation of a
BSL program are peculiar: I/O operations are performed just tike in a deterministic language. Tbrs,
for example, the inputs read since tbe last choice point are not plsbed back to tbe input stream wbeo
backtracking occurs.lT

2.5.2 The basic compilation tedrnique

BSL was carefully designed so that a BSL program could bc compiled into a program of an Algol-class
language for performing its backtracking simulation. Tbe original BSL compiler, written in Fraoz
Lisp, translated BSL program< into UND(rt C, and ran oD a VAX ll/780 computer under tbe LIND(
operating syst€m (Berkeley version 4.3). We bave presently portcd the BSL compiler to tbe IBM
3081-3090 compuers at tbe IBM Watson Researcb Center; it cunently runs under CMS and
Wl/Lisp, and produces C code acceptable for tbe PL.8 and AT&T C compilers. To keep tbe pres-
eDtation manageable, we w'ill generally confine ourselves to tbe l'subset of BSL in discrssing is
implementation on a real computcr. ln I', tbe variable values tbat need to be pusbed down for a
later restart at a given cboice point consist of the values of tbe variables tbat are lexically known at
tbe cunent point (i.e. tbat bave been declared in a quantifier tbat encloses tbe current point), plus the
values of tbe variables tbat bave been pushed don'n but not yet restored by tbe cunent executioo.
However, assuming tbat run-time checks about single assignment are omitted, tbe singte-assignment
property of tbe BSL language allows a substantial optimization in tbe state saving and restoring op-
erations. Tbe present implemeotation uses an aggressive tecbnique of saving and restoring variables,
tbat is based on tbe assumption tbat the prograrn is correct in tbe sense tbat Do scalar variable or
scalar subpan of an aggregate variable wi[ be cxplicitly re-assigned wben it already bas a non-
un"ssigned value, or used while it still bas tbe unassigned value. Tbese are called tbe single assign-
ment and $e no-use-before-set rules, respectively. Assuming tbat tbe progran adberes to these rules,
tbe follou'ing observation applies to a typical variable at a giveu cboice point: lf rbe variable is already
assigned, tben it will not cbange during the coDtinuation of execution (because tbe program follou's
tbe single assignnrent rule, and because its storage spacc (statically allocated for l') will not be de-
allocated during tbe continuation of executioo), so it is Dot Decessary to save it. On the otber band,
if tbe variable is not yet assigned, then no program path staning at the current poi-ot will use is old
value (because the program follows the no-use-before-sct rule), so it is still Dot Decessary to save it,
even tbougb tbe variable may contaiD a garbage value assigned during a failed patb wben a back-
tracking returD occurs to tbe current point- fb.i5 tg6hnique is as unsafe as onitting subscript range
cbecks in Fortran, but appears to provide tbe higbest performance. As a result of this technique, tbe
progran state tbat bas to be saved for later resumption of execution at a given cboice point consists
only of tbe return address, and the variables wbose curently valid (assigned) cootents may be de-
stroyed during tbe continuatioo of execution by re-assigning to tbem, or by reusing their storage area.
In tbe present implementation, whicb allocates variables statically for l', tbe variables wbose va[d

Thcrcarctwojusti f icat ionsforthismodif iet ion:i f  withinassignmcntfrccsubformulas(orF,f,) ,(Ea...  .F,), .F,and
Il do not cxpness mutuaUy erclusivc conditions. or if F, is true for morc than one valuc of n in its quantificr nnge, du-
plicatc rclutions for.rt,... r. may bc printcd out q'ith thc unmodificd tcchniquc. Abo, sincc .F, dcs not change the initial
starc thar crists q'hen (or 4 41 or (E n ... .F,) bcgins erccution. if a toul failurc occurs bccause of rhe assigrred variabies
(or subpars of variablcs) of this initial statc after f, is simulatcd. there is no use in bacltracLing ro f,, or .F, s'ith a dif-
ferent valuc of n, sincc tbcy camot affccr Ore assigned variablcs of t}rcir initial starc.
This eppean ro bc rlre rcquired l/O scmanrics for the intcractive dcbugging of a generztc-and-test application.
UND( is a trademarli of AT&T BcIl laboratories.

n
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oontents may trc so destroyed (called destructible variables), are precisely tbose whicb are declared
within rbe scope of a univenal quantifier (A ...), and wbich are aho lexically koown at tbe currenr
cboice point- Sucb variables typically cousist of quanrilier iodices.te Tbns, it is possible to rapidly
ptsb down tbe entbe program stale at a non-deterministic choice poinq and wben a failure later oc-
cuns, it is possible to return to lbe most recent cboice point directly. Tbere is no need to execute
statements in tbe backward direcrion [o reacb the most rec€nt cboice point, whicb is a tcchnique that
is sometimes ued for translating ordinary (multiple-assignment) non{eterministic programs to
deterministic ones Btoyd 67, Coben 79].

We will inductively describe below tbe unmodilied version of the backuacking simulation of zn L'
formula, in an Algol-class laoguage \r'bich bas label variables, wbere a goto into a block, from outside
the block, is allowed. It is intended tbat an I' formula u'iU be compiled into sucb a progran. We will
not elaborate on tbe traoslarion of BSL terms and types to an Algol-class DotatioD.

Assume tbat if in tbe l'formula, any quantified subfornrula (Q v...), or (Q k...)) ...), occurs wirhin
anotber quantified subformula (Q u ... ), or (O ((u ...)) ...), and v - v, tbeD v is replaced by a fresb
variabfe tbrougbout (Q v...), or (O ((v...)) ...). The purpose of this transformation is to avoid rbe
complications of the original nondeterministic semantics of tbe quaDtified formulas of Lt, wbere tbe
culrent value of tbe outer variable has to be saved wben tbe inngy sulfernruta begins execution and
has to be restored wben the inner subformula finisbes execution. Tbe very initial values of variables
before tbe program begins execution of course do oot need to be saved or restored, even tbougb rhe
semantics of quantified BSL fonnulas always calls for saving and restoring, for the sake of regularity.

To execute ( :-  / l ) ,
wbere / is a scalar lvalue.
and I is a scalar term

I:- t

To execute (p t, t ),
wbere p is a relational predicate symbol,
and {, Ir are scalar terms

if(not(p(tr, ,2)))
retum to the label on tbe stack top

To execute (and Fr fz)

execute Ft
etecute F2

It may bc possible to further rcducc thc number of push-donrr and resrorr opcrations by detcrmining. through dau flos'
analysis [Aho and Ullman 77], thosc variablcs which will not bc uscd s'hcn bachracking occurs, and thcn omirrng ro
pnsh thcm dosn; but q,c havc not altcrnpted this in thc prescnt implemcntation.
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To execute (or Fr Fz)

pwh known destructible
variables, returD address rel

cxecuts F,
golo trlccett
,et: Wp known destructible variables
execute F2 {no "tail recursion"}

succesJ.'

To execute (E ((x W)) F)

{x is a destructible variable iff
tbere is an enclosing universal quantifier|
begin
static.r: typ
executc F1
end

To execute (A x init cond incr Fr)

{.r is a destructible variable}
begin
static r: integer
x:- in i1
while(cond)

begin
execute .Ft
x:-hcr
end

end

To execute (E x init cond incr F.)

{r is a destructible variable ilf
tbere is an enclosing universal quanrifier|
begin
static x: integer
x:- ini t
wbile(cond)

begin
push known destructible

variables, retum address rrl
execute.fi
goto n/cce$;
f"/j pop known destructible variables
x:- incr
end

returD to tbe label on rhe stack top
end

.tuccesJ.'



lnitially, tbe label of an instruction to stop tbe program is on tbe stack. Just before tbe "end" stare-
ment of tbe block represeDtiDg tbe topJevel formula (E ((x W)) n, tbere is a sratement tbar prinrs
.x, and aoother statement after tbat "end" tbat returns to tbe label on the stack top. To incorporate
tbe modificarion described above, for tbe case of assignment free subformulas Ir in tbe context (or
\ F) or (E n ... Fr), a statement to discard tbe retum address and known destructible variables from
tbe suck top must be insened jrst before &e "goto rt/ccesr" statemenB in tbe dgoritbm. "Static"
variables are mezrDt to keep tbeir values even wben rbe block in whicb tbey are declared is exired.

In an implemeotation wberc run time checks about single assignment are not being performed, such
as tbe present implementation, it is up to the programmer to ensure that a scalar variable, or a scalar
subpan of an array or record variable r, is not assigned more tban once. and is oot used before being
assigned a value, during any execution of a formula (E ((: gp)) Ir). Thus

(E ((x integer))  (and (:-  r  0) ( : -  I  l ; ; ;
(E ((x integer))  (--  x 0))

are illegal programs. But

(E ((x integer))  (and (or( : -  r0)  ( : -  r  l ) )  ( - -  x l ) ) )

is a legal program. AIso, no explicit assignments sbould be made to quantifier indices, whicb should
dways already coDtain a valid value. Most of tbese enors may be detected througb data flow analy-
sis, and tbe programmer could be wamed, but in general it is tbe programmer's responsibility to en-
sure tbe single assignment and tbe no-use-before-set rules. An advice to achieve adherencc to such
ntles within a geDerate-and-test application, s'bjch is tbe intended main application of BSL, is to
perform all assignments in tbe beginning of a sequence (and Ft Fz ... F,) and ensure tbat, for alt
possible initial conditions, wben a panicular successful execution of a.n "or" or "(E-r ...)" assigns to
some variables or subparts of variables, tbe otber successful executions also assign to exactl'' tbe same
variables or subparu of variables, and to make sure tbat all relevant variables and subpars of vari-
ables bave been assigned aftcr a cenain formula d in the sequence of formulas. After fi,, only
assignmsnl-free tcsls sbould be executed.x

Altbougb tbe modified backtracking algorithm described above is easy to understand, it is not tbe best
way to execul€ assignment-free subformulas. For example, quite unlike a subformula tbat expresses
a genuine nondeterministic cboice, sucb as "(or (:- x 1) (:- r 0))," wbicb with the above tecbnique
would compile into:

R1:

L2:

pusb destructibles, Rl
I : r  1
goto L2;
pop destructibles
I : r0

an essignment-free subformula sucb as "(or (and (-- x l) (-- z 0)) (< x y))" is best executed as
a Boolean l€st, via compar€ and brancb statemeDts:

Prorided that it is guanntced that iUcgpl computatiors such as double assigr.ment or use-bcforc-set qtlJ not occur, and
quantifier loops s'il| tcrminatc. thc @rrcclncss of a BSL progfilm in thc scnsc of adhcring to a logical spccification is
oftcn automaticalll ' achicvcd, r'ith an acccptablc tradc-off in cfficiency. Hou'evcr, s'c arc nol too cxcited about thjs
tutomatic spccification and corrcctness advanbge of BSL over othcr Algol.class languages: in ccnain non-trivial ap-
plications (such as gcnenting bcautiful music). correctncss rnay not be ovcrly meaninlful, or thc lbgical specification
rnay bc rm long to providc any fccling of sccurity.
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if x!- I goto Ll
if z--0 goto L2

LI:
if r;-y backtrack

V:

wbere "backtrack" means return to tbe label on tbe stack top. Tbe technique of pushing dou'n tbe
desrructibles before tbe (aod ...) and discardiug them from tbe stack after the (and ...) is successful
would be too inefficient, altbougb equivalent to tbe code given above. Similarly, even within a sub-
formula F, tbat contains assignmens in tbe context (or F1 f2), there sbould be no burry in pushing
doun tbe destructibles before F1 is executed. For example a subformula (or (and (-- I0) (:- x 0))
(and (-- y l) (:- r -1))) would be better executed as:

if y!-O goto Ll
pub destructibles, Rl
I : r  O
goto L2

Rl: pop destructibles
Ll: if y!-l backuack

I : r  - l

L2:

To cope wirb arbitrary mixtures of assignment free formulas and fonnulas u'ith assignrnents, tbe BSL
compiler geDerates efficient combi-uations of boolean tcsts and pusb dou'n operations, by delaying
tbe pusbdoun operations within d in tbe coDtext "(or F, 4)" or "(E r ... Fr)" as long as no as-
signmgpts are encountered. In particular, "(or Fr F)" or "(E x init cond incr Fr)" wbere .Fr is as-
signment free, is compiled into code witbout tbe pusb and pop operatioos surrounding tbe code for
ir, using 3 1sc'hnique whjcb is equivalent to a standard compilation method for Boolean expressions
of Algol-class languages [Aho and tlllmann 77], extended with BSL quantifiers. Tbe compiler makes
one pass over tbe list sructure for a BSL formula except in a subtle case where a quantified subfor-
mula is encountered beforc any assignments or predicate calls are, in whicb case some look-abead is
nec€ssary. We give the l' version of tbe algorithm used in tbe BSL compiler in Appendix C. In
figure 2.1, we provide tbe C code produced by the BSL compiler for tbe eight queens program shou'n
previously in thiq chapter. We are assuming tbat tbe reader is familiar u'itb tbe C language [Kemigban
and futchie 781. In this cnde, we see tbat witbin the exisrcntial quantifier (E j ... ) in the eight queeos
program, the pushdown operations necessary for backtracking bave been delayed until just before tbe
assignment to tbe n'th queeo, and before t"bat, we see tbe ordinary compilation tecbnique for Boolean
cxpressioos. extended witb BSL quantifiers.

Anotber point about tbe implementation tbat needs to be explained is tbe call-return mecbanisnt for
predicates and functions. BSL functions are compiled into C functions, so lhe call-return nrechanism
b tbe standard ooe for recursive functions, tbat already exists io C. IN parameters are passed to
functions by value, OUT parameters are passed by reference. As it was already remarked in tbe
language description, the formula tbat defines the function must be deterrninistic, i.e. it must not
contaiD assignmenb within Fr in tbe coDtext (or Ft F) or (E n ... Fr), and it must not contain predicate
calls. This rule eosures that no pusbdown operations will be generated during compilation. BSL
predicates are recursive procedures tbat are at the same time nondeterministic, so tbe ordinary re-
cursive call-return 5ssleniq6 [Pratt 751 cannot be used, since wben a predicate returDs u'ith a choice
point pending in it, its recursion stack frame cannot be de-allocated. Tbe present BSL compiler
handles calh to predicates in open code, through two pointers _fp and _top, which poinr to the
bottom of tbe recursion stack frame for tbe executing predicate, and tbe first available free location
oD tbe recunion stack, respectively, (_top need not point to tbe top of tbe cuneot recursion stack
frame). Tbe recursion stack is separate from tbe backtracking stack. [n general, u'ben a predicate is
called,Tbe returD point, old_fp, aod tbe parameters are stored in locatioos_top,_top+1,.... IN
parameers are passed by value, OUT parameters iue passed by reference. Then in tbe beginning of
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tbdde - / e/g.e/ 6ctq|t/LC/5/bddefsh"
ahddc'6rcccb'
EltO {
rqllcr cioo _,;nr ._;- 

_Dsact;
rqbabt\ fq

3raableO:
_PUSH|(0h
{
lrtic i* plth
{
r= 0:

-5:iU (o)-t) goro_l;
I
t= o;
_&;
U (j)=t) 3oto_0;
{
l,- 0i

_12:i
I (\)-a) 3oto _t t;
I  g==(plLl)) 3oto _lO;
f (G(Pltl)) * *(r'l)) goto 

-lo;I (G(pltll)= 
- 

(\-o)) toto _l 0;
t -  L+l ;3oro_l2J
_t t : ;

_PUSHI0)i_PUSHI(n);_PUSHI( I h
finl= j; goto _7;
_R I 0:;_POPI(a);_POPI0h

_10:;
j -  j+ l ;goto_tJ

t :a

i= o+l ;8oro-5J
_t:;
lprintf( otfle'-\n-);
lbt _i0;
for(_io= O;il(&++_X))
I
l'rbr(-otnq'(- 

- 
(E 96d) %d) \ r-,-O*{-l0t);

I
I
I
_ycs- l;
_0:;
ri.ct((-_?)->_lX
crse 0: 3oto _R2;
crcc l :3oto_RlO;
I
_R2:;
fpfi tf(-oltfile.'96s \ o",-vcf!cs':'tro-);

I

Notcs:
rion _peno {ht _t ..li /.o* mdrinc rord./
rrioo _yanm _bsctl_BSTACKSI zrl;

bt Jcs=O;
FILE '_crtflc=sdout;
ldefnc_PUSHI(r) ( +++)->_l-(r)
ldcfne _POPI(r) (r)=(-_+)-) i

Figue 2.1: Example of compiled BSL code. Unrrsed
declaratioru (coming from sdmac) have been removed.

tbe called prooedure, _fp is set to _top, and _top is incremented by tbe size required by the local
variables and paraDoetcrs. Tbe stack frane for a predicae includes two coDtiguous regions, a region



for tbe variables declared in noodercrministic block and a rcgioo for variables declared in
detcrminisric blocks (where deterministic is as defined above, and block refen to "(E (...) ...)", "(E
r ...)", "(A x ...)" or tbe wbole predicate definition witb its parameters). The variables of a
deterministic block are dlocated in the deterministic region at an offset equal to the total size of tbe
variables declared in tbe enclosing deterurinictic blocks. Tbe variables of non-determinicdc blocks
are allocated in separate places in tbe non-detcrministic regioo so that tbey will never be overlaid by
otber variables until tbe stack frame is deallocated. Wben a retum is being perfomed, it is cbecked
wbetber _fp and _top differ only by tbe size of tbe current stack frane, aud if tbe prsbed'down
value of _fp (found at a fixed offset from tbe top of tbe backtrackiog stack) does not equal tbe
current _fp; if so, tbe stack frame is deallocated (_top is set to _fp).2t Return tben takes place by
restoring _fp to is old value and braoching to tbe return poinr Tbis run-time check is oot compiled
for a predicate wbose defining formula is found to be deterministic afrer all; sucb a predicare uncon-
ditionally deallocates its stack frame during retum. For progranr tbat bave predicae definitions tbe
_top and _fp pointers are considered among tbe destructible variables, aod pusbed doun on every
cboice point, and restored upon every backtracking return. Note tbat tbe implemeDtation of non-
determinism is a pretty old topic: olber techniques, sucb as pushing dour a substantial ponioo of tbe
recursion stack at every cboice point [Smith and Enea 73], have aho been used for haodling non-
detcrminism and recursion simultaneously, but our tecbnique, whicb benefis from tbe single assign-
ment nature of BSL, is more efficient because it requires very little data movement during a
pushdown or restore operation, and also involves no variable a@ess overbead, if _fp can be allo-
cated iD a register.

We sbould finally mention tbe sbortcomings of tbe BSL implementation as of rhis time. Tbe present
compiler is unable to compile predicates separately, aggregate variables declared within tbe scope of
a universal quantifier cannot be pusbed down, and type cbecking bas only been panially impte-
mented Note that t-bese are restrictions of tbe present implementation, ratber tban language defecrs.

25.3 The heui*ics fe:tue

Tbe backtracking simulation of a BSL formuta-progr:rm generates the possible assignmgs6 to tbe
designated exisrendally quantified. variables in $e order imposed by tbe formula iself. This is good
for applications where all solutions bave to be found aryway, or where any solution wiIJ do provided
that one can be found. [n fact, a broad range of combinatorial problems, and some expen systems,
may be implementcd witbout nodifying tbe basic backtracking simulation of BSL formulas.

ln otber applications, tbe solution space is so big tbat we crnnot find all solutions; even il we did, tbe
compfete list of solutions would be quite boring and tseless. This would be the typical case in BSL
programs tbat would generate mrsic, poetry, or interesting tbeorems. Tbe remedy is to control tbe
order in wbich tbe solutions are generarcd, so tbat tbe berter solutions tend to come out first. This
feature is implemented in BSL tbrough hanrLstics.

Tbe order of simutation of tbe different executions of a fornula F cao be controlled by enclosing F
in tbe construct (H F (\ -. I^) F, ... Fe), wbere I, ... l, are lvalues, and Fr,...,Fo zre hanrtstics, u'hicb
are deterministic BSL formulas tbat do not cause any assignments to variables not declared n'itbin
tbem. Tbe beuristics are specified in decreasing order of priority, witb tbe most imponant beuristic
{, listed firsL Within (H F ... ), F is first simulated, and eacb rime F succeeds (presumably after as-
signing values to lr, ...,1.), tbe truth values of Fr, ...,F0 in tbe current state are conputed, and the D-
tuple of tbe current values of \ , ...J,, called a candidate assignment to (/r,...,/,), is saved io a list along
witb tbese trutb values, and finally a failure return is forced.x lf and u'ben F produces no more sol-
utions, tbe resulting list of candidate assignments is first randomly sbuffled, and tben soned accorrling

U _fp and _rop diffcr only by the sizc of the current stach frame, then there am no choice poinrs pending in procedurcs
liat serc callcd by tlc currcnt proccdurc and that have rrturncd. U, in addition, the value of_lp on rop of rhe back-
rracking sracl des not cqual the currcnt _fp. then thcrc also arc no choicc points pcnding in t}rc currenr proc€dure.
A BSL formula is dcicrmincd to be true in a statc if rnd s'hcn at least one elccution of it succce& q'hen slaned ir thc
culrcnt sultc, il is &lcrmincd o bc falsc iJ and s'hcn all erccutions of it fail c'hcn suncd in the currcnt slale (cf. nelarion
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ro tbe evaluation function 2^i*(i) + 2r-rhr-r(i) + ... +2oho1i1 , wbere for each i - 0,...*, n,(i) is
t, if beuristic fi was true when r was assigned to (4,...,/,), aod /r,(-x ) is 0, otbenpise. Tbe shuffle op-
eration is necessary for preventing tie-resolution from being affected by tbe unwanted extra
"beuristics" tbat enanat€ from the regularity in tbe generation of tbe list. Tben tbe simulation of (H
F...) succeeds fint with tbe best (higbest-valued) assignmeot to ({,...,1"), tben, if backtracking occurs,
witb tbe next hst" etc., as defined by tbe soned list- Tbe present compiler iDserts a simple interactive
inarface into thi< point tbat can list in abbreviated form tbe heuristics tbat a candidate assignment
to (,... /", Dade true, print a candidate assignment, try tbe next or previors candidate assignment,
backtrack, or accept tbe candidatc assignment. This particular weigbdng scbeme for tbe heuristics
was cbosen because of is clarity, freedonr from unconstraioed numerical weigbts, and efficient im-
plementation.

As an erarnple of a beuristics application, consider a BSL program for generating a simple oelody:

(E ((p (array (N) pitch_type)))
(An01qDN)( l+n)

(H (and (generatc_noa p n)
(tcst oore p n))

((P n))

;prefer to move by stcp
( imp (> D 0) (step (p ( l -  n))  (p n)))
;prefer unused notes
(A i (max 0 (- n window)) (< i n) (l+ i)

( ! -  (p n) (p i ) ) )
. . . )  )  )

1lste that if we were to exteDd I,' to include heuristics, the logical uanslation of a formula (H F ...1
would be jrst .ts in Ue present first-order theory; similarly ttte non-deterurinistic prograrn semanrics
of (H F...) b jnst tbe noodeterministic scmantics of F. A collection of beuristics merely specilies
tbat ccrtain termination shtes of a BSL program are better tban otber tcrmilation states, and proce-
durally impoces ao ordering on tbe seguence of termhation states enumerated during a determinstic
simulatioo of a BSL progran. It bas no effect on the nondeterministic meaning of a BSL program
Dor on the meaning of tbe prograo's first-order translation. A modal tbeory flkipke 53, Harel 79]
would probably be appropriat€ for fornral;"ing beuristics.

Tbe relatiorsbip between BSL's beuristics and tbe research on default reasoning, Don-monotonic
logic and belief revision lReiter 80, McDermott 82, Manins and Sbapiro 83] is wonb mentioning.
Consider modeling the following reasoning process: after being told tbat Ozzie is a bird, one makes
tbe "inference" tbat Ozzie flies, because birds usually fly. However, wben told tbat Ozzie is an
ostricb tben one has to undo tbat "i.nference". Sucb a proc€ss can be modeled by the !3sliksgking
bebavior of a BSL program tbat incrementally coDstructs a finite database that is consistent witb a
finite scquence of input assertions. Heuristics, analogous to default nrles [Reiar 80], may aid in bi-
asing tbe search of such a program toward solutions wbere birds fly (solutions wbere a bird does not
fly are also acccptable). Database integrity constraio6 occurring as subformulas u-ithin the BSL
program may assure tbat incorrecr be[efs sucb as Ozzie flies, are properly undone througb back-
tracLing. However, tbe first-order translation of sucb a BSL program u'ould only serve to specify tbat
tbere exis6 a finite database that is consistent witb tbe finite sequence of input assenions; it n'ould
bave no operationat meaning pertaining to tbe backtlasking, or "non-moDolonic" behavior of tbe
BSL program that oonstrucls sucb a database.

by lailure in Probg [Oark ?8]). ln practicc a hcuristic is compiled inlo an crtcndcd boolcan tcst that scs a bit to one
in r sord dcscribing thc currcnl candidatc -.signment's worth, if tlre ust Ls truc.
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25.4 The compilation of llelligcnr backuadring

Tbe ordioary backtracking tcchnique for tbe dcterministic simulatioo of BSL progranrs may some-
times be inefficienr Consider a BSL program wbere execution proceeds by "generate-and-test"
steps, wbere each step consbs of cboosing a value among a set of values and assigning it to tbe n'rh
element of an array, and tben testing and possibly rejecting that assignmeDt acoording to certain
coLstraints oD tbe values of array elements 0,...,D. lI, at a generate-and-test step, tbere are Do ac-
ceptable assignments to tbe u'th etement, and if the reason for tbe failure is the assignmeDt at tbe k'th
step, k<n-l, tbe ordinary backtracking algoritbm will still returD to tbe n-l's st€p, which is totally ir-
relevant to tbe failue. ln tbis case, a substantial amount of computation tbat wiU look useless to a
human observer will be done until tbe most recent step tbat is causiog tbe failure is finally reacbed,
and the offending assignments are undone. Tbere bave been a number of researcb projecs in A.I.
and logic programrni-og that bave addressed tbis important problem [e.9. Sussman and StallmanTT,
Doyle 79, Bruynoogbe and Pereira 81, Manins and Shapiro 83, de Kleer and Williams 86], that one
feels compelled to do something abouL

Tbe BSL compiler attempts to aUeviatc this problem associated with ordinary backtracking via a
special compilation 6shnique tbat is uiggered by a compiler optioo" Because we observed tbat so-
phisticated intelligent backtracking algorithms could actually nrn slower tban ordinary backtracking,
we looked for a compilable technique tbat involved as little overbead as possible. In our tecbnique,
it is assumed tbat tbe oomputation proceeds as a sequeDoe of generate-and-test steps. Otberwise tbe
tecbnique is domain iodepeodent- Wben intelligeDt backtracking is specified as a compi.ler option, a
tag is associated with every variable, except variables explicitly declared as "not_tagged." Tbe tag
bas tbe same structure as the original variable, ir the case of array and record variables. In general,
wbenever an assignment is made to a scalar variable, or an array or record member, tbe current value
of the backtracking stack pointer is stored in tbe tag associated witb tbe variable. Tbe intuition is that
if we later lvaat to cbange tbe value of this variable, we sbould backtrack to tbe stack level given in
its tag. lotelligent backuacking is explicitly indicated for a subformula F by enclosing it in (ib (4 ...
L) n, wbere Iy ...J, are lvalues tbat are assigned during F. F , which is typically tbe "step" of a
generate-and-test application, has to be a subformula sucb that if any execution reacbes a panicular
instance (or step) of tbe subfonnulq tben all executions must p:rss through that irstance 1or step);!
e.g. a subformula of tbe top level (and ...) or tbe body of &e rop level (A ...) of tbe main fonnula
would bave sucb a property. Before simulation of .F starts, a global pointer variable _t0 is ini(ialized
to a minimum stack pointer value, meeniDg total failure. Within F, wben a test is made and it fails,

_t0 is set to max(_CI, tags of lvalues appearing in tbe test). Wben an assignnent is made u'ithin
.F, tbe tag of tbe left baDd side is set to tbe maximum of the tags of tbe rigbt band side, and to the
minimum value if the rigbt bend side does not contain tagged lvalues. Otherwise simulation of .F and
backtracking takes place as uual. Assuming tbat no execution of Fwill be successful, tbe objective
is to individually compute a responsible step (stack level) for tbe failure of eacb execution of F, and
collect tbe overall maximum of tbese stack levels in _t0. Wben F fails witbout ever being successful,
tbe program backtracks to tbe stack level given by _t0. Otbenpise if F succeeds, tbe tags of tbe
lvalues \, .-.,1,, which have been presumably assigned a value during F, are set to tbe cunent value
of the stack pointer, for use by later stages Oat will do intelligent backtracking. A different technique
is used for assignmenG that are no( enclosed n'ithin any "(or ... )" or any "(E r .-.)": Tbe tag of tbe
left band side of the assignment is set to tbe maximum of tbe tags of lvalues occurring on tbe rigbt
hand side for such assignmeots. Tbe reason for this is tbat tbe only way to undo sucb assignmens is
to undo the assignmenLs to tbe lvalues occurring on their rigbt band side. A-notber optimization is
made for guantifier indices wbose corresponding rncr and rnt terms do not contain ugged lvalues,
or whicb are enclosed within an "(or ..)" or "(E: ...)" but not enclosed i! "(ib ...)": sucb quantifier

Thc conccpt of an instancc of a subformula could bc formalizcd as a particular subgraph of an (in gcneral infinite) di-
rccted acycLic graph corrcsponding ro rhe main formula. corsisting of a singlc cntry verlcr and a single exit vene:, c ith
ercs labclcd with assignmcns, tests and olhcr anciJ)ary actions; such Orat a successful erecution of the main formula
corresponds to slarting at thc cntry vcnex qith an injtial stale, and travening a path from thc entry venex to the exit
vcnct by crccuring thc rctions nrittcn on thc arcs on the path without failurc.
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indices are treated as unugged. Tbe outermost "(or...)" iD tbe expansion of "if" aDd "sase" stale-
rDents does not count as an "(or ...)" iD these contexts.

For tbe heuristic to work conectly witb predicate and function calls, functio6 gell< must Dot hide de-
peodencies on global variables, Similarly, in the present compiler, predicates called from Fsbould not
coDtain assignmens or predicate calls within an (or ...) or (E ...). The "not_tagged" declaration
sbould be used for variables wbose values will be constant duriag erecutioa.

To see why this technique u'ill oot produce less solutions tbat tbe ordinary backtracking algorithm in
a geDerae-and-test application, observe tbat if during a particular intelligeot backtracking simulation
of F tbat represeDb a particular generate-and-test step, all executions of F fail, and return is made
to an inkrnediate step tbat comes after tbe tnost rec€Dt resporsible step computed by tbe beuristic,
tben nooe of tbe assigumenb to variables or parts of variables that the failing tess of F depeoded on
wiU bave been undone, since for every failing test of F, tbe variables or subparts of variables tbat were
used in tbat test were eitber assigned at or before tbe responsible step, or were computed from vari-
ables tbar were assigned at or before the responsible step. Tbus when tbe ordinary backuacking
sinulatioo ever reacbes tbe panicular step of F that originally failed (by our assumption, all exe-
cutions must pass through that step), tben eacb execution of F will fail again, because of tbe very
sane t st tbat failed in tbe original simulation, if tbat test is reached witbout failing otberwise. Tbrx
tbe ordinary backtracking simulation tbat backtracks to tbe immediately preceding step, can never
go past tbe panicular step of F that caused tbe original failure, until it finally backtracks to tbe most
receDt responsible step computed by tbe intelligent backrracking simulation.

We can sbow tbe operation of tbe backtracking algorithm with a simple example. Consider the
program

(include stdmac)
(options enable_ib t)

(E ((x ioreger) (y integer) (z integer))
(and (or ( : -  x 0) ( : -  x 1))

(or ( : -  I  0)  ( : -  y l )  ( : -  y 2))
( ib O (and ( : -  z (+ x l ) )  (1-  z2)))))

Whereas tbe ordinary backtracking algorithm u'ill try all combinarions to exbanst tbe searcb space:

x-0,y-0; x-0,y- l ;  x-0,y-! , i  I -1,yrQ; I-1,y- 7;  x- l ,y-2;

tbe ioteUigent backtracking algorirhm will try only

X-0,y-0;  X- l ,y-0;  X- l ,y- l ;  X- l ,y-2 .

because wben (;- z 2) fails, return will be made by tbe intelligent backtracking technique to the Dext
cboice for x, and Dot to tbe chronologically preceding stage, whicb would nrerely yield a different
value for y, which is irrelevant to tbe failure of (7- 721.

Tbe code generated fsl rhir particutar program is given in figure 2.2.

Tbe present compiled beuristic bas much less execution and storage overbead tban tbe techniques
described in [Bruynoogbe aod Pereira 81, Stallman and Snssman 77, Doyle 79, Manins and Shapiro
83, de Kleer and WilDams 86], because it substitutes a single stack level for a dependeDcy set (at the
cost of lack of furtber intelligence at tbe level to rlhicb tbe iotelligent backtracking return has been
performed. Also, because of tbe language definition, tbe beuristic cannot inspect F, within "(and F
Ft" if Fr fails, tbus tests tbat expose dependencies on earlier stages sbould be executed earlier,

;include standard macro definitions

;enable intelligeot backtracking
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F4ure 2.2: Example of cohgiled inrelligcnt backcacking code.



wbenever possible). Unfortunately, rhe present technique still tends to take tbe same anounr of tinre
as tbe ordinary backtracting algorithm, when it works, and about 460/o longer, wben it is useless.
Some perforrrance results tbat display typical and ertreme cases are given belqw.z

Program normd intell.

color 29J 2.1
8'queens 0.5 0.5
l l4ueers 75.2 72.2
DeBruijn(2,S) 59.4 86.6

Franz
@n0p.
fired

2.6

:

Franz
comp.
generic

25.9

Frznz
interp.
fixed

I28.9

CProfog 1.3
inrcrp.

209.7

:

"color" is a purposefully inefficient graph cotoriag atgoritbm that first colors a grapb and tben cbecks
for tbe constrains. Is sole purpose is to sbow tbat tbe algoritbm works. Tbe ,,n-queens" and
"DeBruijn" are tbe algoritbrns given elsewhere in this cbapter, witb "ib" placed around the outerolosr
universally quantified subformula in them. Tbe figures given are tbe VAX ll/780 user cpu rime in
seconds for exhausting tbe solucioo space, witbout printing resul6. For the 8nueens problem, timings
for compiled (fixed aritbmetic), compiled (generic arithmetic), and inarprereO liixea arirbmeril)
versions of an equivalent Fren' Lisp program that uses do statcments, efficiently accessed lis6, and
all applicable optimizatioDs are also given for reference, followed by tbe liming ior an equiyalent in-
tcrpreted CProlog program (a Prolog compiler was Dot available). Note, however, that Lisp, prolog,
and BSL :ue very differeor languages tbar are useful for different things.

Tbe present beuristic nevenbeless automatically removes tbe typical need for Conniver-sryle
[Srssman and McDerrrott 72] explicit backtracking to an ear[er-than-normat srage, witb no time
peoalty, and tberefore does have a use in applications wbere sucb intrusion in ba&trackiog woutd
otben'ise be mandatory. Tbe expcrt systcm that is described in rbe following cbapter was one such
application.

2.5 hogrammingexamples

BsL is primarily intended for implementing a c€rrain class of expen sysrem( wbere a cool,entional
design approacb based on Lisp, Protog or a knowledge engineering tanguage would not provide tbe
required execution efficiency. However, BSL can also be used for quick coding of ccnain ordinary
Programs, combinatorial problems, and database queries. We feel that such smail programs will pro-
vide a good opponunity for understanding tbe capabilities of tbe BSL laoguage, anJ ttus we baye
devoted Ois section to examples of sucb program<.25

Note tbat wbile BSL quantifiers offer great coDc€ptual conveniences, tbe linear searcbes generated
tbrougb straigbtforward use of tbem bave undesirable asl'rnptotic propenies. However, this is usually
not a problem wben BSL is ued as a functional replacement for an A.I. language impteruented on
layers of interpreters. Where critical, optimizarion tecbniques may bave to bi oesign.a ioto a BSL
compiler 1e g'ansfe1a1 straighrfonrard uses of quantifiers into more efficieot access mitbods. or better

It is difficult to ilsscss hor thc intclligcnr/standard backrracling sloq,doe,n rario obraincd citlr rhc prescnr algorirhm
compares to tbe ratios of, c.g. [Suliman and Sussrnan 7?]. or [Doy]c ?91, sincc rhese elgorirhms have nor been
bcnchmarled agailst standard bactrncking. lBruynooglre and Percira 8l] rcporr r sloqdosl ratio bcts.cen 0.67 and
2'6(2.6for4-queens). Hoqever, ir isprobablyinappropriatetomakcpcrformanccanissucinthisropic, sinccinrel l i -
8cnt bacLtracking is a chaUenging problem in is os.n righr.
It may bc dilficult to visualizc hos BSL can bc used for dcsiEring an cxpcn s)Tlem, rithour deraiJcd descriprion of an
clample; thcrsforc wc qrilJ defcr disctssions abour BSL and cxpcn s)'stcnu to tlc next chaptcr, s'herc a subsuntial ap-
plication wil,l be dcscribcd"



dgorithms may have to be implemented at the prograru level, at the expense of looger formulas. Bur
in our experience, BSL's present speed appeared to be more than adeguate.

We sbould also remark tbat tbe logical assenions conespondiog to complete BSL progranu, as given
in tbe foUo$'ing examples, are peculiar, because tbay are closed, i.e., their tnrtb does Dot depeDd on
the value of any variable at tbe point where an execution of tbe program succeeds. A succrssful exe-
cution of a complete BSL program in fact amouns to sbowing tbat tbe logical assertion conesponding
to tbe prograD is rrue.

I - Find all primes less tban N

(include stdnac)
(dc N 1000)

(E ((p integer))
(or ( : -  p 2)

( :_ p 3)
(Ei5(<iN)(+i2)

(and (Aj  3 (< j  i )  (+ j  2)  ( ! -  (0,6 i j )  0))
( : -  p i ) ) ) ) )

Sample output:

aaa

7-- p 2)

i t - t "
(-.- p 5)

!:.- o t)

1-- p l l )

Tbe assertioD corresponding to this program is given below. ln this and in the bigger assenions to
come, \\'e will be using "(px,, ... ,xn:UF)", wbere Q is V or 3, as a sbortband for "(Qxt I type(x,)="
tlpe")... ( Qx" I type(x") -" type")".

(3p:integer)
[P-2 v P-3 v

(3i  l i  e {5,7,9,. . . }  & i<N)
l(Yj lj e 13,5,...,i-21)[io,'"j#0] & p:ill.
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2 - Find DeBruijn sequences lRalston 82], circular strings of tength.t/r, composed of digis from 0
... M-|, wbere every lvdigit long substring is distincL AD array d[n], n-0,... J{'r' + N - z,tbat begins
with,V M'l's, is used to represent tbe circularstring. We rse tbe definition as tbe program (betkr
algorithms are knonn). Here (eval:) is a macro, defined in tbe "stdmac" file, tbat returns tbe result
of applying tbe Lisp eval fuoction to tbe macro-€xpaosion of .r, aDd (irnp 4, F,) is a macro tbat ex-
pands inrc (or (not F) F). (Tbe macro definitions i.D "stdnac" are documented in Appendix D.)

(include srdmac)
(dcM3N2)
(dc SIZE (eval (+ (expt M N) ( t-  N))))

(E ttO (anay (SIZE) integer)))
(A n 0 (< n SIZE) (1+ n)

(Ej0(<jM)( l+j)
(and (:- (d n) j)

( icrp (< n N) (--  (d n) ( t -  M)))
(A k ( l -  n)  ( ) -  k ( t -  N))  ( t -  k)

(Ei0(<iN)( l+ i )
( ! -  (d (-  n i ) )  (d (-  k i ) ) ) ) ) ) ) ) )

Sample output:

aaa

( - '  (d 0) 2)
(--  (d l )  2)
(__ (d 2) 0)
(-_ (d 3) 0)
(_- (d 4) 1)
(--  (d 5) 0)
(__ (d 5) 2)
(-_ (d 7) l )
(__ (d g) 1)
(-.- (d g) 2)

Corresponding assenion:

(3d: (anay (SUE) integer))
(vn l0SD<SIZE)

(3j  l0si<M)
. td[n]- j& [nqN + d[n]-1' ,4-114

(vk I  n_l  :k>N_1)(3i  |  0si<N)[dln_i]*d[k_i ] ] ] .

3 - A query in tbe style of DSL Alpha, from [Date 1977): Find tbe Dames of suppliers wbo supply
aU parts. Relations:
s(s_sno,s sname,s_status,s_city),
p( p_pno,p_pname,p_color,p_we igbt,p_city),
sp(sp sno,sp_pno,sp_qty).



(include stdmac)
(dt snotype (Sl 52 S3 54 S5))
(dtsnametype (SMTH JONES BLAKE CLARK ADAMS))
(dt citytype (LONDON PARIS ATHENS ROME))
(dt pnametype (NUT BOLT SCREW CAI4 COG))
(dt colonypc (RED GREEN BLIJE))
(dr pnotype (Pl P2 P3 P4 P5 P6))
(dc S_SIZE s SP_SIZE 12 P_SIZE 6)

(dx s
(array (S_SIZE)

(record (s_snosDotlpe)
(s_soame snametype)
(s status integer)
(s-citY citYtYpe)))

20
l0
30
20
30

(s1
s2
s3
s4
s5

SMITH
JONES
BIIKE
CLARK
ADAMS

NUT
BOLT
SCREW
SCREW
CAM
coG

RED
GREEN
BLUE
RED
BLUE
RED

LONDON
PARIS
PARIS
LONDON
ATHENS))

t2
l7
t7
l4
12
19

LONDON
PARIS
ROME
LONDON
PARIS
LONDON))

(dx p
(array (P_

(record
SIZE)
(p_.pno pnotype)
(p_pname pnametype)
(p_color colonype)
(p_weigbt integer)
(p_city citytypel;;

(Pl
P2
P3
P4
P5
P6

(dx sp
(array (SP_SIZE)

(record (sp_snosDotype)
(sP-Pno PnotYPe)
(sp-qty ioteger)))
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(st
s l
s l
sl
sr
sl
s2
s2
s3
s4
s4
s4

PI
P2
P3
P4
P5
P6
PI
Y2
P2
P2
P4
P5

300
200
400
200
100
100
300
400
200
2N
300
400))

(E ((ans snametype))
(E n 0 (< n S_SEE) ( l+ n)

(and (A i  0 (< i  P_SIZE) (1+ i)
(Ej0(<jsP_sIzE)(t+j)

(and (-- (sp_sno (sp j)) (s_sno (s n)))
(--  (sp_pno (sp j ))  (p_pno (p i ))))))

(:- :uls (s_snarne (s n;1y1y;

Output:

aaa

(-- ans SMITI{)
yes

Correspood ing assertion:

(&,p,sp)
[s-"((s_sno S1 s sname SMTH...) . . . )"  &
p-"((p_pno PI p_pname NUT...)  . . . )"  &
sp-"((sp_sno Sl sp_pno Pl . . . )  . . . )"  A
'(3ans:snametype)

(3n losncS_SIzE)
[(Yi l0Si<P_SIzE)

(3j l0si<sP-sIzE)
!sp[] sp_sno- s[n]. s_sno & sp[]. sp_pno : p[i]. p_pnol

! an<-s[6].5 soame]].

4 - Recursive query in tbe style of Prolog [Kowalski 79]: ls Zeus an aDcestor of Semele? Tbe retarion
is p(p_cbild,p_parent) for brevity.

(include stdmac)
(dc P_SIZE 8)
(dt myrbologicat (HARMONIA APHRODITE ARES HERA SEMELE

DIONYSUS CADMUS ZEUS))



(dx p
(array (P_SIZE)

(record (p_child mythological)
(p_pareot mytbological)) )

(HARMONIA API{RODITE
ARES HERA
SEMELE TTARMONIA
DIO}.TYSUS SEMELE
HARMONIA ARES
ARES ZEUS
SEMELE CADMUS
DIONYSUS ZEUS))

(dp parent ((x mythological) (OUT y mytbological))
(Ei0(<iP_SIZE)( l+i)

(and (-- x (p_child 1p i)))
( : -  y (p_parept (p i ))))))

(dp aocestor ((ul mltbological) (u2 mytbological))
(or ( - -  u l  u2)

(E ((x mltbological))
(and (parent u1 x) (anctstor x u2)))))

(ancestor SEMELE ZEUS)

output:

yes

Corresponding assenion:

(3p)[p-"((p_child HARMONIA tJrarent APHRODITE) ...)" &
[(Vx,y:mytbological)

[(3i | 0SicP-SIZE)[x-p[i].p-child & y-p[i].p parentl

. Parenr(x,y)l &
(Yu l,u2:mltbological)

[ul-u2 V (3x:mytbological)[parent(ul,x) & ancestor (x,u2)]

+ ancestor(ul,u2)l
r ancestor(SEMELE,ZEUS)ll.

5 - Another example in the style of Prolog lKowalski 79] and Plan-oer lBobro,r' and Raphaet 74].
Socrates and Turing are bumans. AII humans are fallible. Socrates is Greek. Does there exist a fallible
individual wbo is Greek?

(include stdmac)
(dt name (TURING SOCRATES))
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(dp buman ((OUT x name))
(or (:- x TURING)

(:- r SOCRATES)))

(dp fallible ((OLJT r name))
(human x))

(dp Greek ((x name))
(-- x SOCRATES))

(E ((u name)) (and (fallible u) (Greek u)))

Output:

aaa

(-- u SOCRATES)
yes

Corresponding assenion:

(Yx:name)[x-TURING V x-$Qftu4TES + buman(x)] &
(Vx:name)[buman(x) p fallible(x)] &
(Vx:name)[x- SOCRATES + Greek(x)] +
(tu: name)[fallible(u) & Greek(u)].

As it can be seen, some Prolog proccdures can be transl3lsd to BSL by writing specific versions of
tbem that explicitly specify whicb parameters are inpus and whicb paramet€rs are outpu6. U BSL
bad a list type and car, cdr, cons operations, tben more Prolog procedures could be translated to BSL
in this way. Tbis raises tbe question wbetber we could compile Prolog procedures for a panicular
goal set by generating specific, efficient versions of procedures for panicular combinations of input
and output parameters. For some Prolog programs this may be possible, and an dgorithm based on
data flow analysis techniques that coruerwriEl)'infers parameter modes for Prolog procedures bas
been developed by [Debray and Warren 86]. However, e.9., in a goal set "p(X),q(X)", wbetber X
will be unified with a ground (variable-free) arm when p(X) is solved c2nnot in general be deter-
mined at compile time, since given any algoritbm for detcrmining this property, a program tbat will
defeat tbat algorithm could be constructed by an appropriate use of Kleene's recursion tbeorem
[Rogen 67].

2.7 Condusions and research issues

Researcbers in fields wbere togic is used for everyday work (e.g. in recursive functioo tbeory) will
perbaps agree tbat logic is a good way of expressing complex conc€pts. We feel tbat logic is often
superior to alternative representation paradigrns in A.I., sucb as box-arrow diagrarus and informal
production systems, aod tbat rbere is a need to write artificial i-otelligence program< in logic. Prolog
fails to meet tbjs need in tbe context of an ambitious expert system, because is available implemen-
tations tend to @nsume too mucb resources on existing bardware, and also because tbere is no non-
trivial control over is built-in backtracking algoritbm. It is often for this latter reason tbat expen
system designers rouiinely tum to Lisp.

BSL, lilie Prolog [Colnrerauer et al. 73], is tbe by-product of an implementation: It was bom out of
a research interest in computer geDeration and Scbenkerian analysis of tonal nrusic, whicb later tumed
out to require a huge computational power and a substaotial k-oowledge base. lt was clear'tbat first-



order predicate calcutns was tbe rigbt knowledge representation framework for music, but in order
to achieve the rcquired furrctionality and performaDce, we bad to give up oD conveDtiooal inference
iD BSL instead, we encoded extra procedural information in formulas so tbat tbe unification over-
bead was reduced ro assignment, rclational test, and parameter passing. This was done by giving
eporate noodetcrmiuistic program s€mantics and logical scmantics to a formula

Tbe BSL coocept was influenced by concepb of program corectness research. From tbe logical se-
maotics viewpoint, tbe fint order translations of BSL formulas bear similarities to tbe wff's of deno-
tational semaotics [DeBakker 79] and from tbe procedural viewpoint, BSL's forural semantics bear
similarities ro tbe nondetenninism of regular dynaoilc logic [Harel 79]. BSL's amalgamatioo of log-
ical specifications and programs is similar ir spirit ro tbe work of [Hebner 84]. Also, as is usual for
any language intended for compiled erecution, tbe BSL language design draws beavily upoo tbe tra-
dition of Algol lNaur 63J, Pascal [Jensen and Wirth 747, znd C [Kernighan asd Ritchie 78]. Bounded
universal and exisential quantifiers were previously used as extensions to Boolean expressions in
SETL lMullisb and Goldstein 73]; but SETL did not enjoy tbe logical propefties of BSL, because it
was Dot a single assignmeot language, and because, being deterministic, it lacked a sufficiently general
bounded existential quantilier.x Non-deterministic (multiple-assignment) prograrns were studied by
lFloyd 67], and tbe concepts of nondeterminism were used for solving A.l. problems in languages
such as Ref-Arf lFikes 70], Planner, QA4 lBobrow and Rapbael 74, B. Sbapiro 73], and Mlisp2
[Smitl and Enea 73]; bowever, to our present klowledge, BSL is tbe first Algol class non-
deterministic language wbose programs have a clear relationship witb foroulas of first-order predi-
catc calculus

It is wonbwhile to contnrst BSL witb Prolog [Kowalski 79], Lnglisp [Robinson and Sibert 80], and
similar logic progremming laoguages. The subset of first order predicate calculus, represente-d by
firsrorder lvanttsliqos of BSL progranr, is clearly very restricted. However, tbe reasons that make
logic prograrnming attractive are more often tbe concepts, expressive richness. and precision of logic,
tbaD tbe completeness of an underlying deduction algoritbm. [n this respect BSL competes favorably
witb existing logic progranming languages: In panicular, BSL gives access to a quantified form of
formulas, ratber than being rcstricted to tbe less natural clausal form of logic, or Horn clauses.
Predicaa definidons iD BSL dlow a limited type of and-or tree programmilg, or backward cbaining,
iD tbe style of Prolog. However, tbe costly feature of executing a predicate witb more tban one
IN-OUT spccification of parameters, whicb unificatioo achieves ia ntn tuna choices between making
equality, and cbecking for it" bas been eliminated. Tbe Pascal style dara types of BSL allon'programs
to be run on conventional supercomputer or RISC architectures. Finally, tbe programmer bas explicir
control over tbe patbs taken by tbe backtracking algorithm used within BSL, and such beuristic con-
uol is again specified in logic. This feature is in tbe direction of fulfilling a need that was noted many
years ago in [Hayes 73J.

At first sigbt tbe sequential spccification of tbe BSL (aod ... ...) and (A.x ...) coDstructs migbt appear
to inhibit tbe and-parallel execution of BSL programs. Ho$'ever, there is a n'ealtb of research effort
that has been spent toward the parallel execution of ordinary (multiple-assignmeot) sequential pro-
grans [e.g. Kuck 78, Kennedy 84], most of whose coocepts are directly applicable to the backtracking
execution of BSL programs. Since tbe fraralJelism iD BSL backrracking progran$ (lilie most non-
numericd software) is of a modest runouoL and is of a fine-grain nature; tbe best architecture for
paralJel elecution of BSL appears to be tbe "Very [.ong lnstruction Word (VLIW)" architecture, for
whjcb powerful compilation techniques are emerging, sucb i$ trace scbeduling lFisher 79, Ellis 86],
percolation scbeduling [Nicolau 85], and limited software pipelining [Touzeau 8aJ. The extraction
of parallelism from BSL prograrDs tbrougb VLIW compilation techniques is panicutarly enbanced by
BSL's single assignment nature, whicb often obviates tbe need for cbecking for and-dependences.2?

On rhc oticr hand, SETL's univcrsal quantifier noetion was not limited to Boolcan expressions: SETL did have a for-
bop construcr s'hich was *zisen *it} a unjvcrsal guantficr. But, unlike BSL. thc for-loop and tie unjvcrsal quantifier
cxtcrrsion of Boolcan cxprrssions serc scparrrc language @nstructs in SETL.
This is the conern about assigning a ncw valuc to a variable whiJc is old r:luc is slill necdcd. In BSL, such a situation
is impossiblc for e varieblc subict to sin$c -.signmcnt; bccausc bcfort tlrc rariablc is assigtcd, it conccptually contains



Flexible aod very horizootal VLfw architectures tbat allow maximal interconoections between proc-
essing elements, and that suppon sufficiently general multiway branching for simultaneous executioo
of all useful patbs in the program, are yet to be devetoped; but we betieve that tbey can be, and we
also beliere tbat enough memory for compiling entire expert sysrems into VLIW code will soon be
available. At tbat time, some furtber modest performance improvemeot will become acbievable for
BSL.

Tbe main drau'back of BSL is that it does not suppon list processing, which makes it unsuitable for
imponant applications that cannot do without list processing. Tbe main good point abour BSL,
however, is that BSL appears to be able to solve problems tbat are beyond tbe powers of Lisp or
Prolog in existing computing environmens, and tbus could serve zrs an alteruative design tool for
cenain computation-intensive expen systems.

en unassiSned valuc shjch no computation can usc in a corrccl prognm (assuming that.lhc run-timc checks for cnforcing
sing,lc assignmcnt havc bccn omitted).



CTIAPTER 3

AN EXPERTSYSTEM FOR
CHORALE }|ARVI ONIZATION

3.1 Inroduction

In tbis cbapter, we '.\'ill describe CHORAL, a knowledge based expert system for barrronization and

trierarcbical voice leading analysis of cborates in tbe style of J.S. Bach. We will first briefly outline

a programming language called BSL, that was designed to implement tbe project, aDd we then will

describe tbe CHORAL syst€rn itself. Tbe full formal details of tbe programming language BSL was

elaborated in chapr€r 2. For tbe benefit of readers wbo are not interested in the deteils of tbe BSL

language, tbe present chapter bas been written in a seU-coutained fasbion, and will begin u'itb a

summary of cbapter 2, repeating wbat was atready said in cbapter 2 wbere necessary. Tbe nature of

tbe research tbat we are about to report is sucb tbat it covers vast aod highly complex areas in botb
artificial inrelligeDcc and music, so we will strive to use a language as comprebensible as possible.

3.2 BSL (Backtracking Speclfication L,anguge)

Lisp, Prolog, and certain etegant software packages built on tbem, are knou'D to be good languages

for designing experr systerns. However, in many existing computing environmenb, the inefficiency

of $esJ languages bas a teodeDcy to limit tbeir domain of applicability to computationally small
probtems, wbereas tbe problem of generatiog non-trivial muic appean to require gigantic computa-

tional resources, and a good-sized knowledge base. As a result, we were led to look for an alrcmative

erpert syst€m desigo language for implemeDting our project

Durini tbe initial design stage of tbe CHORAL project" we found tbat represeDti.Dg musical k-oow-

tedge using a first order togic framework would be suitable, and while we were going back and fonb

between logical specifications and ways of executing tbem, BSL (Backtracking Specification Lan-
guage), a programming tanguage u'hose programs look lilie logic formulils, was designed. Tbe result

L 
- 

**u{ approach to the use of logic in computer programming, but is extremely traditional in

rhe sense of tbe cxecution paradigm. Unlike languages such as Prolog lKou'alski ?9], or l-oglisp

[Robinson and Sibert 80], BSL does oot compute througb deduclion, BSL is merely a Don-

determinist ic languagewitbPascalstyledaratypes,wberedoubleassignmgnl isforbidden'BSLbas
a Lisp-like synrax and is compiled into C via a Lisp program. We bave provided BSL witb formal

semantics, in a style inspired from [DeBakker ?9], and [Harel 79]. fte semantics of a BSL program

f is defined via a ternary retation *, such tbat V(F, o, o'; m..tts program .F leads to final state o'

wben s6ned iD iDitiat state o, wbere a state is a mapping from variable Dames to elements of a

"@mputer" universe, consisting of integers, arrays, records, and otber ancillary objecs. Given an

initiaistate, a BSL program may lead to Dore tban one final state, since it is oon-deterministic. or it

may lead to none at all, in case it never tenninates. Wbat makes BSL dilferent from ordinary non-

dearministic tanguages Bloyd 671, and relates it to togic, is tbat tbere is a simple mapping that

translates a BSL program to a formula of a first-order language, sucb tbat r/ a BSL program termi-

nates in some state o, then the conesponding fint order formula is true in o (wbere the trutb of a

formula in a given state o is evaluated in a fixed "compurcr" interpretation after replacing an1' free

variables x in the formula by o(.x).) A BSL progmm is very similar in appearance to tbe corresponding
first order formula, and for this reason, we call BSL programs formulas.



To provide a feeling about bow a BSL program looks like, we give here ao example of a BSL program
to solve a tiny ptr"zle, followed by its first order translation: Place 8 gueens on a cbess board, so tbat
Do queeD takes aootber. Assume tbat tbe rows and columns are numbered from 0 to 7, aod that tbe
array elements p[0], ... pt7] represent the position of tbe queen in row 0,...,7, respectively.

(include stdmac)
(options registers 1f ; n))

(E ((p (array (8) integer)))
(An01an8)( l+ n)

(Ej0(<j8) ( l+ j )
.  (aod(Ak 0 (< k n) ( l+ k)

(and (!-  j  (p k))
( ! -  ( - ;  1p k))  ( -  n k))
( ! -  ( -  j  (p k))  ( -  k n))))

( :_ (p n) j ) ) ) ) )

First-orde r translation:

(3p I type(p)-"(array (8) integer)")
(Vn l0Sn<8)

(3j  l0sj<8)
[(vk l0skcn) U*plk]  & j -plk l*n-r & j -p[k]*t-nl
& P[n]-11

Because of rbe similarity between a BSL fonnula and its logical couoterpart, a BSL fonnula is fike a
specification for its own self: it describes wbat it computes. As a reader familar witb logic can readily
see, tbe BSL formula shown above specifies what a solution to tbe eigbt queens problem sbould sat-
isfy, assuming we read an assignment synbol as equality, and translate the quantifiers to a conven-
tional notation. This BSL formula compiles into a backuacking program in C t-bat finds and prina
instantiations for tbe array p, tbat would make tbe (3p)-quantified pan of tbe correspondiog first or-
der formufa true in tbe fi:ed interpretation. Tbe register declarations sbourn in rbe option list are
passed to C, and cause tbe C compiler to plac€ tbe quantifier indices k,j,o in registen if possible, for
faster execution. Tbe original BSL compiler was written in Franz Lisp, and ran oo VAX ll/18O
computers. We bave presently ported tbe BSL compiler to VM/Lisp and IBM 3081-3090 compuers.

We can obsene some examples of BSL language features iD tbis 8-queens program: Tbe basic
building blocks of BSL iue coDstants, tbat coDsist of integers sucb as -2, 0,3, and record tags such
ils ssD, salary; and variables, sucb ils x, p, n, or eulp (for convenience, we irssume tbat variables are
distinct from record ugs). n BSL term can be a variable or a constant, aod more BSL terms cao be
buift up from these as follows: if termt and term, are BSL terrs, and binop is one of tbe binary op-
erators +,-,',/,sub, and dot" tben (binop termt termz) is also a BSL term. Examples of BSL terms are
0, ( + x 2), or (' 2 (dot emp salary)). Tbe coostructs ( 1+ r), ( 1- x) may be used as abbreviations for
(+ : t) and (-.x l), respectively. A BSL lvalue is eitber a variable, or a tenn of tbe form V, ... (f"-t
U^x ...)...) ...) where eacb of fr,...f^ is eitber sub or dot, and wbere x is a variable. Lvalues are tenns
tbat can appeiu as the left-band operand of an assignment, and are exemptified by x, (dot emp sal-
ary), or (sub p n). Lvalues cao also be abbreviated as long as tbeir normal DotatioD can be inferred
from context, for example tbe latter two lvalues can be written as (salary emp), and (p n), in tbe
proper contexts. A BSL atomic formula is either an assignrnent of tbe fonn (:- Iwlue term), or a test
of tbe form (relop tetmrtem2),wbere rclop is one of -- (equal), != (Dot equal), (, )-, (-, or ).
A BSL atomic formula is a BSL formula. Assuming F1 and Ft are BSL formulas, tben so are tbe fol-

;include strndard ntacro definitions
;dlocate k,j,n in registers



lowing: (and 4 Fz), (or F1 F2),a (A x init cond incr F), (E r inir cond incr Ft), and (E ((x W)) Fr),
wbere r is a variable, init , incr ate t€rms, and cond is a BSL formula not containing any occulrences
of A E, or I r, and t1p is type. Tb€ BSL types are simil4' to tbe type declarations of an Algol-class
language, and allow integer, anay aod record declarations. Examples of BSL types are inleger, (anay
(3) integer), and (record (ssn integer) (salary integer)).

We give bere an informal description of tbe non-deterministic progmm semaotics of BSL: Tbe var-
iables of BSL can range over objects, eacb of whicb has a corresponding type. Objects of type integer
are constaDts such as -2, O,3, and U (called tbe unassigned constant). An object can also be an anay,
which is a list of objects of the same type, or a record, which is a list of alrernating record tags and
objects, Dot Decessarily of tbe sane type. Arrays aDd records are exemplified by (l 2 U), whicb is
an object of type (array (3) integer), and (ssn 999123456 salary 25000), wbicb is an object of type
(record (ssu integer) (salary integer)). Tbe values of BSL tcnns are computed by r.rsing the usual
meanings of tbe binary op€rators +,-,',/,sub, and dot. sub is defined as tbe subscript operator for
arrays q'bose first elements are always assumed to bave index zero, and dot is defined as an operator
tbat extracts a subobject of a given record as determined by a given record tag. BSL atomic fonnulas,
i-e. assignments and tests, are executed in the conventional manDer. However, if a test does no( come
out to be true, or if an attempt is made to assigo to an lvalue wbose previous value is oot U, or if an
attempt is made to perform an illegal computation (sucb as adding I o a variable wbose value is U,
or dividing by 0), execution does oot terminate. (and Fr .F2) is executcd by fimt executing F,, tben
Fr. (or f, ftl is executed by executing one of F or Fz. (A r rnil cond incr Fr) is similar to tbe C "for"
loop, it is executed by saving tbe old vatue of x, sctting x to init, while conl is true repetitively exe-
cuting Ft and setting x ta incr, and restoring tbe old value of x if and wben cond is finally false. (E x
init cond incr F) is executed by saving tbe old value of x, setting x to rnt, setting x to incr zero or more
times, executing F, , and then restoring tbe old value of x. cond must be true after.r is set to rnit and
afrcr eacb time x is set to inu, or else execution does no! tcrminate. (E ((x tSp)) Ft) is tbe "begi-B-
end" block u'ith a local variable, it is execuad by saving tbe old value of x , setting .x to an object of
lype 0,p all of whose scalar (i.e. integer) subobjecs have tbe value U, executing Fr, and tben restoring
tbe old value of .r.

Tbe translation of a BSL prograo to tbe first order asscnion tbat is is true at its tcnnbation states,
is for the Dost pan obvious, bowever, botb tbe assignmgpl symbol (:-) and tbe equality test (--)
of BSL get translatcd to tbe equality symbol in tbe logical counterpaG tbat is, tbe program contains
procedural information Dot present in is logical counterparl For a simple subset of BSL, wbere tbe
only allowable looping constructs are of tbe form (A r t (< x l2) (l + r) ...), (E : t (( x t) ( t + x)
...), and variants tbereof, the transtation of tbese to bounded quantifiers, namely (Yxlt'1 3 x < t'z),
( l r f  r iSr</r) , . . .works;wbere /r ,  / raretbef irst-ordertranslat ionsof BSLtermstr and t2,re-
spectively, and u'bere r does Dot occur in eitber t, or |l2. However, for tbe general case, wbicb we tvill
not elaborate bere, tbe rigorous tren<lation of BSL fomulas involves associating a different function
symbol of tbe first order language witb every quantified formula of BSL, and is less natural.s

Tbe following translation eramples sbould demonstrate tbe intuition behind the relationsbip of a BSL
prograln to its first-order trenclation: Wben eitber (:- x O) is successfully executed (i.e. x is initially
U), or (-- r 0) is successfully executed (i.e. x is initially 0), tbe assertioD x-0 is true at rhe rcrmi-
Dation state. WbeD (or (- 

- x 0) (- - r I )) is successfully execuled, (i.e. x is initially 0 or l, and tbe
prop€r subformula of tbe "or" is cbosen for execution), tbe assertion [x-0 V x- l] is true at the ter-
mioation stae. When

(A i  0 (< i  t0) (1+ i)  (E (0 integer))  (and (or ( : -  j  0) ( : -  j  t ) )  ( : -  (sub a i )  j ) )))

b successfully erecuted (i.e. a is initially aD aray object u'hose first teo elements are U),

ln thc cighr quecns progam abovc thc construcl (and 4 .f, Ji) abbreviates (and Fr (and .f F,)). ln Fencral, (P Fr ..
f i ) r 'herek>2zndPLsoncof "end"or"or" ,canbcusedasanabbreviat ionfor(PF,. . .  (PFu (Pf. ,Fr)) . . . ) .
Scc chaptcr 2 for dceils.



(Yi  l0si<10)(3j  l typeO)-" integer")[U-0 v j -1]  & a[ i ] -11

is true in rbe crmination state (thic assertion says tbat tbe first l0 elemenB of a are an arbitrary se-
guence of 0's aod I's). Tbe fint order ranslation of (and (:- x 0) (:- x (l + x))) is [r-g & x-x+ 1],
but sucb a BSL fonnula can never rcacb a termination state, Do matter what tbe initial value of x is,
becarce it violates tbe single assignment rule enforced by the progran semantics of BSL. Tbe intuitive
purpose of the single assignment rule is to ensure that tbe cootinuation of executioo docs not destroy
tbe uutb of rbe assenions tbat were previorsly made true. TopJevel BSL fomulas (i.e. complete
programs), sucb as tbe 8-queens program given above, do not contain free variables, so tbeir exe-
cution is oot affected by tbeir isitial state in any way. Successfully executing sucb a top-level BSL
formula is equivaleot to proving tbat the correspooding first-order sentence is true in an interpretation
that involves objecs aod operations on objecB.

A BSL program of the form (E ((x tlp)) F) is implemented on a real, deterministic computer via a
modilied backtracking metbod, u'hich rn principle attemps to simulat€ all possible executions of the
BSL program, and prins out tbe value of : just before tbe cnd of every execution tbat turus out to
be successful. Wbenever a cboice bas to be made between simulating Ft and simulating .Fr in tbe
contcxt (or F1 F), tbe curreot state is pusbed down to enable restarting by simulating Fr, and F1 is
simulated. Whenever a choice bas to be made between simularing F and setting x to rncr in the con-
t€xt (E x init cond incr I), tbe current state is pubed down to enable restartirg by setting x to incr,
aod F is simulated. Wbenever z test (relop 4 tz) is found to be false, or if cond is found to be false in
tbe context (E x init cond incr F), aod eacb time afrer the rop level (E ((x W)) ...) is successfully
simulated and r is prinad, tbe state that existed at the most rec€nt cboice point is popped from tbe
stack, and simulation restarts at tbat cboice poinr. Double assignment, and illegal computations (sucb
35 xdrling a oumber to a variable wbose value is U) are considered errors and sbould Dever occur
during tbe simulation of a correct BSL program. Simulation begins n'itb an empty choice-point stack
and ends u'ben aD attempt is made to pop semglhing from an empty stack.

A modification is made to this basic backtracking technique for tbe case of assignment-free formulas

^F, in tbe context (or F, FJ, or (E n ... Fr). Afcr a fornula F1 in such a coDtext is successfully simu-
lated, tbe most recent cboice point on tbe stack is discarded (whicb would be tbe cboice point for
restarting at Fr, or Fr witb a different value of n, assuming tbe modificatioo is uniformly applied).
Tbis convention, similar to the cut operation of Prolog, serves to prevent duplicate solutions for x
from being printcd out when F, and Fr do not cxpress murudly exclusive condidons, or wben F1 is
tnre for more tban one n in is quantifier range.

For tbe purpose of demonstrating the actually implemented version of BSL's backtracking semaDtics
with sufficient detail, we are supplying in figure 3.1 tbe C code geDerated by tbe BSL compiler for
the panicular 8-queens progran given above.3o We are assuming tbat tbe reader is familiar u'ith the
C language [Kernigbao and Ritchie 78]. ln cirse run-tine cbecks about single assignment are omitted,
as tbey are in tbe present implementation, tbe BSL language allows aD optimization in backtracking:
BSL's program state tbat has to be saved for restarting execution later at a given point, consiss only
of the active variables whicb may be rc-assigned during tbe continuation of tbe execution, and the
active variables wbose storage are:rs utay be reused during tbe continuation of tbe execution, plus tbe
return address. Such variables typically consist of quaotifier indices. It is this smallness of state that
enables a BSL prognm to rapidly pusb doun tbe entire program state at a non-decrministic choice
point" and !o return to tbe most recent cboice point directly wben a failure later occurs, witbout bar'-
iDg to execute statemeDts in tbe backward direction [cf. Floyd 67, Cohen 79]. Also, for assignment
free subformulas F1 io tbe context (or F, Fz) aod (E n ... F1), tbe BSL compiler produces efficient
oompare and branch statemeDts, using an extended version of a slandard compilation technique for
Boolean expressions [Aho and Ullman 77], instead of implementing the equivaleot but inefficient
semantics of first pushing dou'D a cboice point and tben discardiDg it wben F1 is successful. Moreover,

Thc readcr s.ill noricc that wc havc omirred thc s,cll-bros:n optimization of reserving diagonals in rhls cight queens

program. This was donc in ordcr lo make it morc rcprcsentativc of thc nndom subformulas s'ithin a largc cxpcrt system.
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Figrre 3.1 : Example of compiled BsL co'de. Unused dedarations
(coming from indude file ndmac) have been remoYed.

eveD when there are assignmeDts in a subformula Ft in sucb a context, tbe compiler delal's tbe

pusbdown operations necessary for backtracking and generates extended Boolean expression code
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for Ft as long as possible, gracefully switching to tbe compilarioo of backtracking code wben it actu-
ally sees an assignment within Ft (please see bow tbe push-down operations have beeu delayed until
tbe assignment to p[n] witbin tbe code generated for "(E j ... Fr)" in tbe 8-queens program). Tbis
combination of extended Boolean tes6 and backtracking is perhaps a natural way to "execute" a
logicd specification on a oomputer, bowever, tbe possible logical specifications are limited ro tbose
tbat conespond to valid BSL programs, and it is required rbar tbe progranrDer indicate wbicb equal-
ities in tbe specification are to be executed as assignments, and whicb are to bc executed as tests.3l

The language subset described up to bere is called l', and constitutes the "pure" subset of BSL, on
whicb tbe formalism is based. Tbe full BSL language also incorporates predicate definitions (u'bich
are cfficiently implemented non-deterministic recursive procedures), function definitions, global
variable declarations, macro and constant definitions, "if' and "case" statemenG, enumeration types,
real types, and a richer set of primitive operations. Facilities ioclude a "(witb ...)" construct tbat al-
lows convenient abbreviations for cenain lvalues tbat would otberwise bave to be nritten out n'itb
long cbalos of sub and dot operators. A "Dot" connective is allon'ed as long irs we can move tbe
"Dot" iD front of tbe atomic formulas witb DeMorgan-like uansformations, and then change r- to
!r, ctc. and stilt get a valid BSL formula- BSL is also extended witb hanristics, which are BSL for-
mulas tbemselves, whicb can guide tbe cboices made during tbe deterministic simulation of a BSL
program. As a preparation to tbe next section tbat depics tbe use of BSL for implementing expen
systenb, we will describe tbe beuristics feature of BSL below.

Normally, tbe order of eoumeration of tbe possible successful executions, or tenninatioD states of a
BSL formula F during a backtracking simulation is determined in a somewbat trivial way via factors
sucb as which subfonnula occurs first in an (or ... ...). Tbis order is fine for applications wbere all
solutions bave to be found, but in applications sucb as music generation, tbe [st of all solutions is of
impractical length and is quite boring. It is tbus nec€ssary to alter the order of eoumeration of ter-
mioatioo states so tbat a better solution will tend to cone out firsl A more sophisticated order of
enumeration of the termination stares of a BSL fornula F can be obtained by enclosilg F in tbe
oonstruct (H ^F (rr ..- l") Fr... .FJ, wbere h ... l, are (not necessarily scalar) lvalues tbat are assigned
during F, znd Ft ,... Fo are side-cffect-free BSL forurulas, called heuristics. (H .F ...) is simulaad as
follows: First aU erecutions of F are simulated, and wbenever an execution of F Erminates success-
fully, tbc termination state of tbe current execution, irs represented by the assignmenb to /r, ... /, is
assigned a oumerical wortb by executing eacb beuristic F., ... fq in the current tersrination state. Tbe
beurisrics are weigbted by decrcasing powers of two. lf a beurisric fi is tnre, & > t > 0, it increases
tbe wortb of tbe current termiDation state by 2t, otberwise, it does not affect tbe wonb of tbe current
tcrmination state. TbeD tbe assignmeDb to h.-- l, in tbe current state are saved in a list along witb
tbeir wortb, and a failure return is forced in order to obtain more termination states of F. II and n'ben
all tcrmination states of F are exbausted (as defined by tbe modified backtracking simulation), the
resulting lisr is soned according to tbe wonb of each t€rmination state (i.e. assignment to (,...,/,).
Ties are resolved witb explicit randomness, by sbuffling tbe list randomly before softing, in order to
defeat aDy extra unwanted "beuristics" tbat may result from tbe regularity in the generation of rbe
lisc Tben (H F...1 succeeds fint witb the bigbest valued termination state of F, tbeD, il backtracking
occurs, witb tbe next higbest valued terminatioo state, etc., and finally backtracks wben tbere :ue Do
more assignments left in tbe list- This feature of BSL forms tbe basis for tbe BSL generate-and-test
paradigm, wbicb is described oexL

ln contrasr b BSL. tlrc unification algorithm lRobinson 65] and ccrtain non-logical sptems such as "Constraints"
[Snsgnan end Stcclc 80]. dcfcr thc choicc bctween na*ing equality znd cfucking for il to run timc. But the unilication
elgorithm has thc clcganr consequcncc of being able to anss'cr different questions about a rrlarion qithout rcpro[yam-
tnirg such as using lhe same codc for hnding thc parcnts of a givcn x, or finding thc childrcn of a givcn y, or checking
if r givcn y is a parcnt of a givcn r. or finding pain (r,y) such t}at y is a parent of r. BSL is onl), suitablc for gtnerate-
.nd-tcst applicatioru whcrc such vcrsatility, q'hjch is usuaUy costly. Ls not of primc importancr, and nhcrr the question
b l-ued (c-g givcn the result of laboratory crperirnens, fi-nd the solutiors to a molccular gcnetics problcm, not the odrer
rzy eround. as cxcmplificd by lstcfil 78]).
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33 The gene,rate-atd-tesf par.dtgm in BSL

So far BSL's capabilities might bave appeared to be no more tban an ordinary noodeterministic
language [Coben 79], pcrbaps suiuble for implementiDg small applications. However, despite is
Spanan dara types, BSL can be used for designing large aod complex erpen systems in a structured
Eanner. The formal analog of a knowledge based sysrcrn based on tbe generatc-and-test metbod
lstefik 78] can be implemented in BSL ia an extretnely long fornrula of tbe following form:

(E ((s (array (N) Ope)))
(An0 not_done (1+ n)

(H (and
(or (znd conditionsl actiottsr)

(znd cond il ions, oct ions r))
constraul, ;

; ilst section
constraint-) i

((s n))
hmrLstict ;

; recommendarions section
hev*ric,))) ;

In tbe generate-and test paradigm of BSL, tbe computation proceeds by "generate-and-test steps,"
wbere eacb step consists of selecting and assigning an ac.eptable value to the n'tb element of the
solution array "s" depending on tbe elemens 0,...,n-1 (and perbaps also on extemal data structures).
Tbe condition-action pairs given here are tbe formal analogs of production rules [Davis and King 76],
as tbey are used in a generate-and-test application. Tbe conditioDs are subformulas tbat typically
perform certain tests about elemeots 0,...,n-1 of the solution array, and the actions are subformulas
tbat typicaUy involve assignmenu to element n of tbe soludon array. Tbus a condition-action pair
bas tbe informat msaning "IF conditioDs are tnre about tbe partial solution, THEN a new element
as described by tbe actions can be added to tbe partial solution."r Tbe constrainrs are subformulas
tbat assert absolute rules about tbe elemens 0,...,D of tbe solution array. Tbey bave tbe procedural
effect of rejecting c€nain assignmen6 to element n. Tbe hanristics are subformulas tbat assert wbat
b desirable about elements 0,...,n of tbe partid solution, tbey bave the procedural effect of baving
cenain assignmssts to element n tried before otbers are. Tbe condition-action pain are called tbe
genlerote section, tbe constraints are called tbe teJt sectioD, and tbe heuristics are called the
recommendations section of tbe knou'ledge base. Eacb step of the program is executed as follou's (u'e
are repeating tbe explanation given above for tbe (H ...) construct): All possible assignments to tbe
n'th element of tbe panial solution are sequentially geoerated via tbe production rules. U a candidate
assipnment does not comply witb the constraints, it is throwD away, otberwise is wonh is computed
by summing the weights of tbe beuristics tbat it makes true, aDd it is saved in a list, along witb is
wonb. Wben tbere are Do more assignments to be generated for solution element n, tbe resulting list
is sorted according to tbe wonb of eacb candidate. Tbe program then attempB to coDtinue witb tbe
best assignment to elemeot n, tben witb the next best, etc., as defined by tbe sorted list, and back-
tracks when tbere are no assignments left in tbe list- Tbe reason we cbose tbe panicular powers-of-
two weighting scbeme described above for tbe beuristics was because of its clarity, freedom from
unconstrained numerical weigbts, and efficient implementadon. Other forms of weigbring schemes
and beuristic searcb bave of course been widely studied in tbe literature [Minsty and Papert 69,
Sarnuel 63, Nilsson 71,80, Pearl 83, Newell and Simon 63]. Heuristic ordering bas also been built ioto

Notc t}rat this condition-action paradign c:rpturcs only rhc gcnerate-and-lesl application of production rules. Morc ar-
bitnry controJ. sudr as sclf-modilication IWatcrman 75], or b]aclboards [8. Hayes-Roth 85], arr unavailable ir BSL.

;
; generat€ section
;
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s€veral early A.I. languages,s3 bowever, BSL allows one to specily very sopbisticated heuristic criteria
witb ease, and in a declarative fashion, because heuristics are tbemselves formulas. Heuristics bave
no effect oo tbe nondeterministic semantics of a BSL formula. or on its first-order traoslation.

Within tbe productioo nrtes, constrainls, and beuristics, tbe existential and universal quantifiers of
BSL can provide capabilities eguivalent to tbe patterD marching capabiliries of a tnre production
system lForgy aod McDermott 77]. For example, assuming tbat we arg dgaling with a molecular ge-
Detics application similar to [Stcfik 78], in order to specify a production rule tbat says "IF certain
conditions are true, THEN the segment wbose length is tbe smallest among a giveo array of segmenls
can be added to tbe partid soludon," one could u'rite

(and "cenain conditions"
(E i 0 (< i maxsegs) (1+ i)

(and (A j 0 (< j maxsegs) (l + ;;
(imP (!- i j)

(( (seg-list i) (seg list j))))
(:- (segment (s n)) (seg_list i)))))

fl5sgming appropriate type declarations for seg list and s, tbe logical translation of rhis subformula
is: ]l

l"certail conditioru" &
(l i  l0<i<marsegs)

[(vj | 0sicmaxsegsXi#j * seg list[i]qseg_listfi]l
& s[n].segment- seg-list[i]ll.

$imil31ly, a constraint assening "IF certain cooditions are. true, THEN tbe 'site' tbat bas jtst beeo
added to the solution c2nnot bave more tban one previous occurrence in rbe solution" ca.n be nrirten
as:

(imp "certain conditions"
(not (E i  (1-  D) (> i0)  ( l -  i )

(E j  ( l -  i )  ( ) -  i  0)  ( l -  j )
(and (-- (sire (s i)) (site (s n)))

1-- (s i te (s j ))  (s i te (s i )1;11;1,

wbose logical translation is:

["cenai.n conditions" +
no{(3i In-l2i>0)(3j I i-1> j> 0XsliJ.site-slnl.site & s[].site-slil.sitelll.

Operations tbat may normally require more than one recognize-act cycle in an ordinary production
system s25 also be perforrred in a single generate-and-test step in tbe present paradigm, e.g. more
tban one attribute of tbe next item to be added to tbe solution, wbere each attribute involves several
oearly independent choices, cao be decided in a single step. For example, assuming eacb solution
element bas two atl.ributes, "site" aDd "segmeD[", tbe generate section of tbe kr:owledge base can
be constructed as follows:

For crample. Plarurcr [Bobrow rnd Raphael 74, B. Shapiro 73] had recomrnendations for guiding rhc choicc of
enleccdcnt and conscqucnt thcorems, rnd Mlisp2 lSmith and Enea 73] had a very general SELECT stalemcnt (similar
to our "(E r ..,)") which aUowcd heuristic ordcring on-the-fly.
Hcrc, (imp .F,4) is. macno that crpands into (or (not f,) 4).
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(aod
(or "condition-action pairs to cboose tbe D'tb site")
(or "condition-action pairs to cboose tbe n'tb segmeot"))

wbere tbe n'tb scgltlent may depeod on tbe n'tb site.

ln fact, the generatc section of tbe fill-in knowledge base of tbe CHORAL systcm decides tbe attri-

butes of tbe three voices bass, tcnor, atto, as welj as otber relevant attribut€s, in a single step, and bas

tbe form:

(and ...
(A v bass (< v soprano) (l+ v)

(or
"condition-action pairs to cboose attributes of voice v at the n'th step"))

.-.)

Tbe production rules, consuaints and beuristics need not be specified in entirely open code as sboun
bere, to enbance tegibility, tbey can be hierarchically grouped according to subject, similar to chapters
and paragrapbs of a musical treatise. Similarly, distinguishable concepts (e.g. parallel motion of two
voices, doubting the fifrb of a cbord), can be implemented througb hierarchies of predicate, function,
or macro definitions, so constrains and beuristics are sbort and are as close as possible to an English
parapbrasing of tbem. Our experiencc while writiDg targe knowledge bases iD BSL has suggested tbat
nested and-or-and-or structures must be avoided (multiplied oul" normali"ed), and that long liss of
similar constrain6 or production rules sbould be replaced by a compact table tbat is interpreted by a

stogle production rule or constraint, and constraints or beuristics longer than a screenful of lbes
sbould be brokea down. Wben such precautions are taken, tbe BSL paradigm indeed allo$'s the
benefiS of a lrue production system iD a cen2in class of generate-and-test applicadons.

3.4 Representing knowledge tith Eultiple viewpoints

Tbe paradigm shonu above is suitable only for simple geDerate and test problerns, sucb as Stefik's
GAI systcm for a molecular geoetics application [Stefik 78]. It uses a single model of tbe solution
object, as represenr€d by the primitives allowed by the solution array's type declaratioo. Represent-
ing knowtedge about multiple viewpoints, or multiple models of a solution object is a need tbar often
arises in tbe design of complex expen systems: tbe Hearsay-Il speecb understanding system [Erman
ct al. 80J was such an example, wbere tbere was a need to observe the interpretation of speecb si-
multaneogsly as mutually consistent strearns of syllables, words, and word sequenc€s. ln logic, a good
way to describe an object from different viewpoints is to use different primitive functions and predi-
cares for eacb view; since witbout tbe appropriate primitives, logic formulas for describing a concept
can be unoecessarily long. But sioce BSL does not allow true functions and predicates, such multiple
viewpoints bave to be imptemented in BSL via pseudo functions and predicates. [n BSL, eacb view-
point is rcpresented by a different data structure, typically an alTay of records, that sen'es as a ricb
set of primitive pseudo functions and predicates for that view. For example, assuming that we wish
to bave a vieu'poilt tbat observes tbe cbord skeleton of a musical piece u'itb two primitive functioos
p(n,v) and a(n,v), representing tbe pitcb and accidental of voice v of cbord n, BSL lvalues of the form
c[o].p[rl aod c[n].a[v], where c is the array of records of tbe view, cau be used as a pseudo notalion
to abbrcviate p(n,v) and a(n,v). BSL's multiple view paradigm has tbe following procedural asPect,
whicb 2mounts lo interleand executiou of generate-and-test: It is convenient to visualize a separate
process for eacb viewpoint, wbicb constructs tbat particular view of tbe solution, in close interaction
witb otbcr proccsses constructing their respective views. A process typicdly executes in unis of

"geDeratc-and-test step"s. Tbe purpose of each step, as before, is to assign acceptable values to tbe
n'tb etement of an array of records, depending on tbe values of the array elements 0,...,n-1, and ex-
GrDal inpu6, e.g. elements of exkrnal arrays of records, wbose values have been assigned by otber
processcs- Tbe processes, implemented as BSL predicate definitions, are arranged in a round-robin

15



scbeduling cbain. Witb tbe exception of tbe specially designated pr(rcess called tbe c/ock process,
eacb proc.ess first attemps to execute zero or more steps until all of is inputs are exbausted, and tben
scbedules (calls) tbe next process in tbe cbaiu with parameren that indicate bow far each process bas
progressed in assigning values to is output arrays. The specially designated c/ocl< process attenpts
to execute exactly one step when it is scbeduled, all otber processes adjr.rst $gir timing to tbis proc€ss.

ln ccrtain cases a view may be completely dependent oo anothet, i.e. it may not inuoduce new cboices
on its own. In &e case of sucb redundaot views, it is possible to maintain several views in a single
process, and sbare beuristics and consuaints, provided tbat one mas[er view is cbosen to execute tbe
proc€ss step and comply witb tbe paradigm. One way to do this is as follou's: at tbe n'tb step of such
a process, tbe generate sectioD is executed to produce a candidate assignment to tbe attributes of tbe
n'tb element of tbe mast€r view, tbe subordinate views are then updated accordi.og to tbe cbosen
rnaster view attributes. and then a mixture of constraints and beuristics from both tbe master and
subordinate views are used to decide if tbe candidate assignmeDt to the n'th element of tbe masrer
view is acc€ptable and desirable.

It is evident that tbe framework described here is in sbarp oontr:rst witb the popular tccbniques for
constnrcting expert systemc, wbere great empbasis is placed on sophisticated cootrol structures aDd
architectures. We should tberefore erplain wby we have cbosen sucb a streamlined architecture for
designing an expert system, ratber tban a more complex paradigm sucb as tbe multiple demon queues
of lStallman and Sussman 77], or the opponunistic scbeduling of [Erman et al. 80]. We strongly be-
lieve tbat striving to use simpler control structures is a betrer approach to tbe design of large systems.
Our design approacb is in fact a deliberate cboice, and is analogous to a recent approach to computer
architecture [Patterson et al. 81, Hennessy et al. 82, Radin 82]: It is a preliminary attempt at reducing
the semontic gap between tbe top and bottom levels of tbe bardware-software complex that imple-
ments an expert system, by designing a streamlined set of system primitives that directly correspond
to the target problem3s [cf. Myen 82]. Tbe paradigm described here bas sened to simultaneousll'
represeot k-oo'*'ledge about and oonstruct multiple models of tbe solutiou object for tbe chorale
program. We suspect rbat it can also be used for any generate-and-test appl,ication wbere l- exe-
cution efficiency is mandatory during aU stages of tbe development phase, and 2- the solution cao be
conveniently represented as one or more Pascal-style data structures. Note tbat programning such
a demanding application iD BSL would be mucb easier than programming it in C or Pascal, since BSL
is i-odeed a higb-level declarative language tbat gives access to tbe expressive ricbness of concep6 of
first-order piedicate calculus, despite rbe fact tbat there is little trade-off of efficiency in cboosing
BSL over conventional lowlevel languages. However, like some of tbe otber knou'ledge engineering
paradigrns, sucb as diagnosis+riented skeletal systenu fBuchanan and Sboncliffe 84], BSL has a
limited scope of applicability; in particular, tbe BSL paradignr would be unquitable for applications
tbat crnnot do witbout list processing: in music, we could get away u'ith mere arrays and records,
because music can be represented as a uniform sequence of events.

3J lntelligent backaacling

Ordinary, or cbronological, backtracking may sometimes be inefficient when no choices can be found
for successfully executing the cunent generate-and-test step, and tbe immediately preceding step is
irrelevant to tbe failure of tbe current step. ln this case, a substantial amount of computation that
will look useless to a buman observer n'ill be done until the most rec€ot step tbat caused tbe failure
is reacbed.

Tbe BSL compiler attempts to alleviate tbe overbead associated witb backtracking by a special com-
pilation tecbnique triggered by a compiler option. ln our technique, it is assumed tbat tbe computa-
tion proceeds :Ls a sequence of generate-and-test steps. Othen'ise tbe technique is

An alternativc succcssful appmach is to rcducc the scmantic gap between cxisting A.l. softs'rrc parzdigns and hard-
rrart, by dcsigning spccialitcd hards'arc for Lisp and Prolog. The BSL paradigrn, on the other hand, is destired for
wcll-undcrstod RISC or supcrcomputcr architecturcs.
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domaio-independent" and will produce tbe same solutions as ordinary backtracking would. Eacb
scdar variable, or eacb scalar member of an aggregat€ variable bas a tag associated witb iu At run
time, things are arrangedr so tbat tbe tag always conl2ins tbe stack level to backtract to in order to
get a dilferent choic€ for the value of the conesponding variable. During tbe executioo of a step, a
running maximum is maintained of tbe tags of all variables tbat occur in tbe failing tests. Wben a step
cennot be executed aod backtracking is Deoessary, tbe program r€turns 16 this computed most receDt
responsible stcp for tbe failure, whicb is Dot Decessarily tbe chronologically preceding step. Ttrere
bave been a number of researcb projects in A.I. and logic programming tbat also bave addressed tbe
inteftigent backtracking problem, [e.g. Sussman and Stallmao 77, Doyle 79, Bruynoogbe and Pereira
81, Martirs and Sbapiro 83, de Kleer and Williams 861, bowever, our project appears to b€ tbe ftst
o incorporate an intelligent backuacking beuristic in a compiler.

Tbe main use of this beuristic is for elirninating tbe need for Conniver-style [Sussman and McDermott
?2] programmed return to an earlier-tban-oormal step. This son of inelegant intnrsion in tbe back-
tr2cking mecbanism would bave orberwise beeu mandatory in the cborale program, since wben a step
of the cbord sleleton view fails, it must at least backtrack to tbe previous step of the chord skeleton
view whicb is oot recessarily tbe inrmediately preceding stcp. However, we bave encountered cases
in tbe cborale program where rhis corservative and domain-independent intelligent backtracking
mecbanism is not intelligent enough. ln particular, it appears to be desirable ro detect Dot only the
responsible step, but also tbe precise cbange tbat is required at tbat stcp (as it was done in lSchmidt
et al. 78]); but we do not presently know of aD easy way to compile sucb an intelligent backtracking
dgorithm, similarly we do not know wbetber tbe additional overbead would be justified. To remedy
tbe problem, we bave added an incomplete searcb feature to tbe compiler tbat gives a fixed number
of chances to tbe intelligent backtracking technique wben there are rep€titive faiJures at a giveD step,
and then forces tbe program to backtrack to successively earlier sreps. This feature c2nnot be used
in more mundane applications wbere afl solutions must be found, but it did give satisfactory resuls
in the present application.3T

3.5 The knowledge models of ttrc CHORAL system

We are now in a position to discuss tbe CHORAL system iself. The CHORAL system uses tbe
bact-trackable process scbeduling tecbnique described above to implement tbe following vien'poi-ots
of tbe cborale:

\\e chord sl<eleton view, whjcb corresponds to the clock process, observes the cborale as a
sequence of rhythmless cbords aod fermatas, witb some uDconveDtional symbols under-
neatb tbem, indicating key and degree within key. Tbe primitives of this view allow refer-
encing attributes such as the pirch and accidenul of a voice v of any cbord n in tbe
scquenc€ of skeletal cbords. This is tbe view where we bave placed, e.9., oonstraints about
tbe preparation and resolutioo of a seveotb in a seventh chord, and beuristics about
Bach-clicbi progressions.

Tbe fill-in view observes the cborale as four intcracting automata tbat cbange states in
lockstep, generating tbe actual notes of tbe cborale in the form of suspensions, passing
tones and similar ornamentations, depending oo tbe underlying cbord skeleton. For eacb
voice v at fill-in st€p o, tbe primitives allow referencing attributes of voice v at a weak
eigbtb beat and an immediately following strong eigbtb beat, and tbe new state tbat voice
v enters at fill-in step n (states are suspension, descending passing tone, and normal). This
is tbe view wbere we bave placed, e.g., a beuristic about following a suspension by anotber
one in tbe same voice, tbe production nrles for enumerating tbe long list of possible
ambellishmenB that enable tbe desirable bold clasbes of passing tones, and a constraint

n
Scc chapter 2 for dctaib.
The incompletc scarch technique *zs later disablcd on thc IBM 308 I version of the program, becaue r.'e fch q'c could
afford more scarch on thc fastcr hardqarc.
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abut Dot souDdiog tbe resolution of a suspension above tbe suspension. For controlling tbe
complexity of the modcl, we did Dot dlow l6tb nores, or crossovers.

Ttre melodic tfrirng view observes tbe sequence of individual notcs of tbe different voices
from a purely melodic point, of view. Tbe primitives of this view allow refereocing tbe pitch
and accidental of any Dotc i of a voice v. This is tbe view wbere we bave placcd, e.9., e
constraint about sevenths or ninths spanned in tbree notes, and a re@mmendation about
cgntinuing a linear progression.

Tbe merged melodic Jtnng view is similar to tbe melodic string view except that it observes
tbe repeated pitcbes merged togetber. This view was used for recognizing aod advising
again<1 cenain bad melodic patterns that we feel are not alleviated even if tbere are re-
peatbg notes in tbe partern.

T}c ttne-slice view observes tbe cborale as a sequeDce of venical time-slices eacb of whicb
bas a duration of a small lime unit (aD eigbtb norc), and inposes the barmonic constraints.
Tbe primitiv"t 6f rhis view allow referencing the pitch aod accidenrat of a voice v at any
-:me-elice i, and wbetber a new note of voice v is struck at tbat time-s[ce. We bave placed,
e.g., constraint about parallel octaves ii ttric view.

'I\e Sclcnkerian analyis view is based on our formal rewriting rules inspired from
lScbcnker 79]. Tbe descant and bass are parsed sepamtely accordi.ng to tbese rules. Tbe
Scbenkerian analysis view observes the cborale as tbe sequenc€ of steps of two non-
determi.uistic bottom-up parsers for tbe descant and bass. The primitivs5 sf thic view allow
referencing tbe output symbols of a parser step n, t"be new state tbat is entered afer exe-
cuting step D, and tbe action oD tbe stack at parser step n. Ttre rules and beuristics of this
view belong to a Dew paradigm of automated hierarcbrical music analysis, and do Dot cor-
respond to any rules tbat would be found in a traditional treatise. This analysis vieu'will
be furtber discussed later in this cbaprer.

Tbe fill-in, rime-slice aod melodic string views are embedded in tbe sane process, witb
fill-in as tbe master view among tbem.

The order or scbeduling of processes is cyclically cbord skeleton, fill-in, Scbenker-bass,
Schenker-descant Eacb time cbord skeleton is scbeduled, it adds a new cbord to tbe
cborale, eacb time fill-iD is scbeduled, it fils-in tbe available cbords, and produces
quarterbeats of tbe actual music until oo more cbords are available. Eacb time a Scbeoler
procsss is scbeduled, it executes parser steps uotil the parser input poioter is less tban a
lookabead window away from tbe eod of tbe cureDtly available notes for tbe descant or
bass.s Wben a process docs not have any available inpus to enable it to execute any steps
wben it is scbeduled, it simply scbedules tbe next process io the chain witbout doing any-
thing. Tbe chorale melody is given as input to tbe program.

Tbere are curreDtly a total number of approximately 350 production rules, constraints and heuristics
in tbe chorale program. Tbe rules and beuristics were fouod mainly from empirical obsen'ation of tbe
cborales and personal intuitions, although we used a number of traditional treatises (sucb as [l-ouis
and Tbuille 061 or [Koecblin 28]) as an anachronistic, but nevenheless useful point of departure. Tbe
current venion of tbe chorale program aims saly to harmonize an existing cborale melody, and assign
an analysis to iL All parts of tbe cborale program are written i.o BSL, except for tbe grapbics routines
aod tbe routbe to read in and preprocess tbe cborale melody, whicb are written in C. ID tbe VAX

Thc lolabeed s'indoq' gzdually gre*'bigger as our idcas evolved, and in the recent verions, for t}re salc of rcducing
modulc sizcs. we havc found it expcdient to plae the Schenlcr proccsscs in a separzic post-proccssing program that
rtads irs inpur from a IIlc produccd by thc othcr views. Note that the tcchnique of uing a scpanlte program for a prr-
ticular proccss is nol ncc€ssarily ousidc thc non-detcrministic parallel proccsscs paradign, it is rather an optinrizatron
of a dcgencratc casc of thc same paradigrr.
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ll/780 versioD of the programt it used to rake typically 15-60 minutes of cpu tine to barmonize a
cborale. In rhe prcsent versioo, whicb bas a larger knowledge basc and some ertremely difficult rules
inteoded to increase tbe output quality, it typicaUy takes about 3-30 minutes of IBM 3081 cpu time
to harmonize a cborale, althougb there bave been a few cborales that bave required several hours.
Tbe program bas presently been tcsted oD about 70 chorales (by consuming inordinate amounts of
cpu time) and has reacbed an acceptable level of competencc in its harmonization capability, we can
say tbat is competcnce approacbes that of a talentcd student of music who bas studied tbe Bacb
cborales. Tbe program bas also produced good hierarchical voice leading analyses of descant lines,
but tbe Scbenkerian analysis knowledge base stiU reflects a difficult basic researcb project in muic
analysis, and is not as powerful as tbe barmonization knowledge base. We were also not able to get
aoy good parsings involviog tbe basses as of this time. Tbe CHORAL systen tates ao alpbanumeric
cncoding of tbe cborale melody as input" and outputs the cborale score in conventional muic nota-
tion, aod tbe descant parse trees in Scbenkerian slur-and-Dotebead notation. Tbe output can be di-
rected to a graphics screen, or c:ut be saved in a file for later printing on a laser printer. The BSL
compiler insers a simple interactive incrface in "(H F ...)" @nstructs, that can explain tbe cboices
made at any step of a viewpoint, and other kiods of debugging tools are built into tbe program iself,
sucb as a graphic display of the progress of the composition, aud a facility for dumping explanations
to a lile in order 16 syaming the program's reasoning afrer it is finiqhed witb tbe cborale. We present
numerous examples of barmonizations and descaot analyses produc€d by tbe program in Appendix
A. Appendix B lists in terse English tbe complete set of rules and beuristics rced in tbe CHORAL
crpert system, which are about 77 book-pages long.

As a concrete example as to wbat type of knowledge is embodied in tbe program, and bow sucb mu-
sical knowledge is expressed in BSL's logic-like notation, we talie a constraint from tbe chord skele-
ton view. Tbe following subformula essens a familiar constraint about false relations (this is tbe most
rec€Dt revision of this constraint, an earlier version of this constraint was given io our previous pub-
lications): "'WbeD two Dotes whicb bave the same pitcb name but different accidentals occur in two
consecutive cbords, but not io tbe same voice, and no singfe voice sounds tbese notes via cbromatic
motbn, tben the second chord must be a diminisbed seventb, or tbe first inversion of (a dominant
seventh or a major triad), and tbe bass of tbe second cbord must sound tbe sbarpened fifth of tbe fint
cbord and rnust be approacbed by an inten'al less tban or equal to a fourth, or tbe soprano of tbe
second cbord must sound tbe flattened tbird of tbe first chord. [o case tbe bass sounds tbe sharpened
note of tbe false rela(ion and moves by ascending major third (matching tbe panem e-g# in a C major
- E major cbord sequence), then some other voice must move in parallel rhirds or tenths witb tbe bass
(matching tbe patterD g-b).t False relations are also allowed unconditionally between phrase
boundaries, wben there is a major-minor cbord cbange oD the same rool" (Tbe exception u'bere tbe
bass souods tbe sbarpened fifth of tbe fint cbord is commonplace, tbe less uual case wbere tbe
sopnrno sounds tbe flattened third, can bc seen in tbe cborale "Herzlicb tbut micb verlangen," no.
165.{ Tbe case wbere tbere is a major-minor cbord cbange on phrase boundaries can be seen in
cborale no. 46, or no. ?7. Tbese exceptions are still not a complete list, but we did not attempt to be
exbaustive). Tbe complexity of this rule is representative of tbe complexity of many of the production
ntles, constrainS and beuristics in tbe CHORAL system. We see the BSL code for this rule below.

Both of thesc thirds are fillcd in *ith a passing note a! thc fiU-in vieq,.
AII chorale nunbcrs in this rcporr arc from [Tcm, 6a].

,
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(A u bass ((- u soPrano) (l+ u)
(A v bass (<- v soPrano) (l+ v)

(inp (and 12 n 0)
(!-  u v)
(-- (mod (pl u) 7) (mod (p0 v) 7))
( !-  (at  u) (a0 v))
(not (E w bass ((- w soprano) (l + w)

(and (--  (mod (pl  w) Z) (mod (pt u) 7))
(__ (p0 w) (pl  w))))))

(or (and (member cbordtype0
(dimseventh domsevenrb I maiorl ) )

(or (and (--  (a0 v) ( l+ (at u)))
(-- v bass)
1-- (mod (- (p0 v) roott) 7) fifth)
1q- (abs (-  (pl  v) (p0 v)))  fourrb)
(imp(thirdskipup (pl v) (p0 v))

(E w tenor ((- w soPrano) (l+ w)
(and (-- (mod (- (pl w) (pl v)) 7) third)

(thirdskipup (pl w) (p0 w))))))
(and (--  (a0 v)  ( l -  (a l  u)))

(-- v soprano)
1-- (mod (- (p0 v) roort) 7) rhtd))))

(and (> fermaal 0)
(-- root0 rootl)
(-- chordtypel major0)
(men:ber cbordtype0 minonriads) )) ) ) ))

Here, n is tbe sequence number of tbe current cbord, (pt v), i-0,1... is tbe pitcb of voice v of cbord
n-i, encoded as 7'octave number+pitch name, (ai v), i-0,1,...is tbe accidental of voice v in cbord
n-i, aod cbordtypei and rooti, i-0,1... are tbe pitcb configuratioo and root of chord n-i, resp€ctively.
feruratar', i-0,1,... indicates tbe presence of a fermata over cbord n-i wben it is greater than 0. The
Dotation p0, p1, etc. is an abbreviation system, obtained by an enclosing BSL "witb" statement, tbat
allows convenient and fast a@ess to the most recent elemen6 of tbe array of records represeDting the
cbord skeleton view. (thirdskipup A p) is a macro n'hich signifies tbat p is a third above p,. We re-
peat the oonstrrint below in a more standard ootation for clarity, rsing tbe conceptual primirive
functions of tbe cbord skeleton vien'instead of the BSL data structures tbat i$plement them:

(Vu I bassSu !soprano)(Vv J bassSvS soprano)
[ [n>0 & u*v & mod(p(n- l ,u),7)-mod(p(n,r ' ) ,7) & a(n- l ,u)re a(n,v) &

not(3w lbassSwSsoprano)[mod(p(n- l ,w),7)-mod(p(n-1,u),7) & p(n- l ,w)-p(n,u') ] l
t
[[cbordtype(n) e {dinseventh,domseventbl,majorl} &

[[a(n,v)-a(n- l ,u)+ I  & v-bass & mod(p(n,v)-root(n- l) ,7)- f i f tb &
abs(p(n-1,v)-p(n,v) ) 5 founb &
[thirdskipup(p(n- 1,v),p(n,v) ) +
(3w l tenorSwgsoprano)

[mod (p( n- 1,w)-p( n- t,v),7) - third & thirdskipup(p(n- l,w),p(n.u') )]ll V
[a(n,v) - a(n- l,u)- I & v-sopralo & mod(p(n,v)-root(n- I ),7) - third]]]

V
[fermata(n-l )>0 & root(n)=root(n-l ) & cbordtype(n-1 )-majoro &

cbordtype(n) e minortriadslll
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Before sbowing an example of a beuristic, it is appropriate o toucb upon tbe significaoce of beuristics
for music generation. Ir b a kno\rn fact that absolute coosuaints are Dot by tbemselves sufficient for
musical resul6: Composen oormally use nuch addidonal koowledge to guide tbeir cboices among
tbe possible solutions. Our limited p<)wers of inuospection prevent us from exactly replicating the
thougbt process of sucb cboices in ao algorithm; but tbere exist algorithmic approximatiors, based
on large amounts of precise domain-specific beuristics, or prefercDces, tbat tend to give good results
in pracdce (cf. ll-enat 76J). Tte cborale program uses aD extensive body of beuristics, whicb are used
for selecring tbe preferred cboice anong tbe list of possibilities at each step of the program, as pre-
viously described in tbe section oD the BSL generate-and-test paradigm. Examples of heuristics
would be to continue a linear progression, or to follow a suspension by anotber ooe in tbe same voice.
To eremplify tbe BSL code corespepding to a beuristic, we again take tbe cbord skeleton view. The
following beuristic asser6 rbat it is undesirable to bave all voices move in tbe same direction unless
tbe target cbord is a diminisbed seventh. Here tbe construct (Em Q (qrqz...) (f a)) is a macro whicb
expands into (or (F qt) (F S)... ), thus producing a useful illusion of second order logic.

(imp (and 11 n 0)
(Em e (< >)

(A v bass ((- v soPrano) (l + v)
(Q (pl  v) (p0 v)))))

(- - cbordtypeo rlirnseventh))

We again provide tbe beuristic in a more sr2ndard DotatioD, for clarilicarion:

[n>O & (3Q e {<,>}XVv lbass5vSsoprano)[Q(p(n- l ,v),p(n,v)) ]  I
cbordtYPe ( n) - dimseventbl.

3.7 On the use of congaints and herristics for music generation

It is wonhwbile to discuss certain practical issues related to tbe use of constraints and heuristics for
music generation. We will first explain tbe motivation behind tbe use of constraios and beuristics for
algoritbmic production of muic.

3.7.1 The motivation behind consf,reints and herristics

A composition is written incrementally, typically from left to rigbt in a direct fashion for shon pieces,
or perbaps i$ a sequeDce of successively refined plans for large-scale works. At eacb stage of tbe
composition, the composer eitber decides to add ao item (e.g. a chord, a phrase, or a plan for a
utovement, assuming a tradjtional idiom) to tbe panial composition, so tbat tbe added item u'ill
bopefully lead to tbe best completion of tbe composition, or decides tbat tbe partial composition
needs revising, aod makes a sequenc€ of erasures and cbanges in tbe previously written pars of the
composition in order to make the composition ready for extensiou again. Given a panial composirion
r and an item y, tbe question wbetber ": is acceptable, and ooe of Oe best ways to extend r is to add
y to it" bolds for (x,y), can be answered by a composer with a limited degree of accuracy and con-
sisteocy; similarfy, for a given acceptable panial composition x, tbe conposer caD find jtems y sucb
that tbis question can be answered positively for (x,y). However, tbe set of pain (x,y) for which the
answer is yes, which can be called tbe extension set, is difficult to define with marhemarical rigor.
Moreover, tbe exteDsioD set does not remain constaDt between styles and historical periods, and
evolves even during tbe course of tbe composition of a single piece. Tbe general approacb of this
researcb was to select a relatively fi-:red style, tbe Bacb cborale, attempt to approximate tbe extension
set witb a precise definition, and tben use tbe precise definition in a computer algorithm for generat-
ing music in tbat style.'r lnspired by our own experience witb a strict counterpoinr program

Mechanizittg the cvolution of the erlension sct over time is a potcntially morc dilficult problcm that has not becn ar-
racled in thc scopc of thc prcscnt rrscarch.
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[Ebcioglu 79,ElJ and the recent Artificial Intelligence researcb in expert systems, we have designed
tbe present knowledge-based metbod for describing tbe extension set, which appears to work, and
succeeds in generating non-trivial music tbat is of sooe competence by educated musician standards.
In tbe following paragrapbs we will discrus tbe general problems associaud witb tbe constraints and
beurisrics used in this knowledge-based metbod, and also describe rbe possible sourc€s for finding
soDsrraints and heurisrics.

3.7.2 The difficulty of using ebsolute nrles to describe red music

A major part of tbe knor,r'ledge of tbe cborale program is based on constrainb, or absolurc rules in
otber words. Absolute nrles, sucb as tbose expressed by treatises on barmony, counterpoint, ot Fugue
d'Ecole, assert" in a very inJlexible manner, which pieces are acceptable, and whicb others are DoL
For artilicial styles sucb as barmony, counterpoint aod fugue exercises, absolute ntles are part of tbe
usual musical knou'ledge and practice. However, some problems are encountered when we try to
describe a real style of music witb absolute rules, ratber tban an artificiat style. Tbe rules in tbe book
do not work, and many treatises mention to what extent great composers break tbe ntles lMonis 46,
Kccrhtin 331. Scbenker [Scbenker 79J provides some modificatioos of traditional rules on fifths and
octaves, so tbat tbe liberties laken by tbe masten are considered acceptable wben the libeny no
longer exiss in a middleground reduction, unfortunaaly Scbenker's rules do not meet tbe level of
precision typically found in a traditional treatise. A number of treatises on composition attempt to
describe tbe free compositional style [D'Indy 12, Durand n.d. (1898), Czeny 79] ([Messiaen 44,
Schillinger 46] could also be considered iD this category), but such treatises do not characterize tbe
existing style of irny master, tbey ofen reflect a particular nonnative view of music. ln general, pre-
scribing rules for tbe music of a master is recognizg6 to be undoable. Nevertbeless, this fact alone
does not imply tbat good approximations of a real style cannot be obtained witb tbe aid of h judi-
ciously cbosen set of sucb rules: for example, [Jeppesen 39], which describes real 16'tb century
counterpoint, zts opposed to scbool exercises, is a treatise in tbjs direction. Moreover, absolue rules
are a powerful software tool in an expert sysrcm: althougb they appear to impose stringeut demands
oD tbe knowledge base designer, in reality tbey are (il our opinioo), conceptually clearer and easier
ro bandle than assertions witb numerical rrutb values lZadeb 79, Sbortclilfe 76, Bucbanan and
Sboncliffe 84J, iD an application as complex and as subjective as tbe present one. We tberefore de-
cided to take a constructive approacb toward tbe tse of absolute rules for describing a real style of
mrsic, namely tbe Bacb cborales.

3.7.3 How absolute rules can be found

S/e will now discuss tbe sources from whicb absolute rules are obtained.

A good sourc€ for finding absolute rules is tbe traditional barmony ueatise. In tbe cborale program,
we used a number of treatises sucb as [l-ouis and Tbuille 06, lovelock n.d. (1956), Durand n.d.
(1890), Dubois 21, Koecblin 28, Bitscb 57], as useful poins of departure, despite their anachronism.
However since treatises are tailored for scbool exercises rather tban for real Bacb cborales, rules from
such books had to be anended to fit tbe actual cborales tbemselves. For example tbe familiar rule
about parallel fifths bad ro be amended to allow a diminisbed fifth followed by perfect fiftb wben tbe
parts are moving by ascending step, because of tbe consisteDt occurrence of tbese fiftbs in tbe cborale
style.€ We see an example of sucb an occurrence in chorale no. 73 shown below:

It is intcresring to note lhar IC.P.E Bach 49] aliows such fiJt]s in the non-extremal prrts, dcclaring tJrem to bt bclter
Oran dcscrnding ffrhs s'hcrc thc firsr is diminished. He also allou's quitc a few other combinations of the diminishcd
and pcrfcct fifth, not oIEn scen in thc choralcs.
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Unfonuoately, if we try to make our rules comprebensive, such amendmenls tend to never reacb an
end. We would bave liked to bave absolute rules tbat would accept every cborale. Howet'er, at-
remptiDg to do so results in tbe unwieldy prolileratioo of allowable, conditional violations of some
rules. Moreover, tbere are cases wbere tbe attenuaring condition for the violation is hard to find.
Consider tbe fiftbs by conuary motion indicated in cborale no. 18 bere. We found it difficult to ex-
plain this liberty (exccpt perbaps by tbe remote atteDuating effect of the first inversion of tbe
dbsonant dominant seventh cbord):s

In certain cases, we tberefore ued our ouro judgement in deciding where to cut the list of conditional
violations.

Anotber sourc€ for obtaining rules is tbe empirical observation and inductive reasoning on tbe
cborales tbemselves. For example, mosl cborale pbrases end on a chord witb the root doubled, wbicb
suggests an implicit absolute rule. Sucb nrles are also not witbout exception, and it is again imprac-
tical to codify tbe precise reasons for all tbe exceptions. To distinguisb wbich exceptioos are truly
represeotative of tbe style, it is necessary to use musical judgement in order to make an educated
guess ils to wbere Bach did wbat be waoted to do and wbere be did wbat be bad to do. For example
in tbe cborale no. l0O given below, this rufe is violated by doubling tbe third in tbe phrase ending;
tbe reason is obvious, doubliog tbe root would bave resulted io a paraUel octave between tbe alto and
bass, or some other unacceptable eror. Moreover it is desirable to keep lbe cadence as it is because
of tbe nice linear progression in the tenor. However, this exception is not a good candidate for
incltsion in tbe program, since it would bring a marginal loyalty to the style and would require com-
plex attenuating conditions to be specified, to prevent tbe backtracking algoritbm from using this li-
cense in inappropriate contaxts. So we ovemrled Bacb in tbis case and declared tbat a pbrase should
end witb tbe root doubled as an absolute rule, rlitb exceptions allowing the fifrb to be doubled in a
IW-V ending in the rninel mode (see cborale no. 51 for an example), and the third to be doubled in
a V-VI eoding (commonplace).

What ls clcar is Oat these fifths arc nol an oversi5lrt, but a lictncr of Ore stylc shcn a desccnding filrlr in thc soprano Ls
barrnonizcd in this spccific nEnner (they also octur h chorale no. 352).



Tbe arbitrariness of this constraint definition slgglanisn needs some elucidation. It u'ould probably
be easy to reduce the corpu of cborales to a uactable size and write constrai-ots that accept all
members of tbe corpus, tbus maliing the method more scientific (It would probably be more difficult
to do tbe same witbout reducing the corpus). However, we know by experience tbat the propeny of
exrct agreement of tbe constraints witb tbe corpus per se would do little belp in improving the quality
of tbe music produced by tbe knowledge base (lBaroni and Jacoboni 76] make a similar obsen'ation).
Moreover, we feel tbat regarding music knowledge base design as more of an art, and giving full lib-
crty to tbe knowledge base designer's goodu'ill and musical intuitions in both tbe beuristics and con-
straints, u'ould produce more coDpetent programs, without baving to res[rain tbe corpus of music tbat
tbe knowledge base desigoer would draw upon. We are not saying that it is undesirable to bave a rule
s€t tbat would exactly cbaracterize a large musical corpus, similar to a tbeory tbat explains tbe out-
comes of cbemical experiments, bowever musical pieces apparently do oot enjoy tbe simplicity of
otber natural pbenomena, aod for tbe time being we may bave to stay witb inexact rule sets ratber
than bave none at all.

3.7.4 The significance of heuistics

Tbe second kind of difficulties faccd by tbe music knowledge base designer is related to finding ad-
c4uate beuristics. Tbe purpose of beuristics is to estimatc, at eacb step, whicb :rmong tbe possible
ways of exteDding tbe partial cborale will lead to the best completion of tbe panial cborale. Heuristics
iue very imponanq since prograrns witbout beuristics, that are based solely on absolute rules and
random selection, tend to quickly get trapped in a very unmusical path, and generate gibberish instead
of music.s ln the cborale program, we are using a natural extension of a beuristis teghnique we bad
used in an early strict counterpoint program [Ebcioglu 79,81] whicb bad been very successful for is
Purpose.

Note that il tbeory it would be possible to cbaracterize any finite set of "best" solutions u'itb solely
absolute rules. In fact" a research effort for generatioD of Bacb cborale melodies [Baroni and Jacoboni
76] has used tbe absolute rule approach. However, beuristics bave a dilferent and more buman-
composer-like flavor of describing wbat constitutes a good solution, because heuristics, in cootrast to
constraints, are rules tbat are to be followed wbenever it is possible to follow tbem.6 Tbe main ad-
vantage of beuristics vs. pure absolute rules and random search is tbe follon'ing: beuristics lead the

It should bc noted that therc ere contexts wherc music generated by cxtremely naive random nunrbergencration methods
[Xcnakis 7l], lct alone absolute rulcs, is not neccssarily gibbcrish, it may offcr e refrcshingsensc of [bcration from the
traditional or modcrn conslrainls and clichds, and a sensc of bcauty from a sophisticated acstictic vieqloint, in fact. a
natural cvolution of Wcstcrn art music Ouough the ccnturies. ln this particular rcscarch we are obviously looking at $e
problcm of computer music from a stubbornly traditional acsthetic point of vicw; in rcal IiIc, wc do not ncccssariil'have
such an approach. Horevcr *c feel that our pr€scnt approach is useful, bcc:rse ansrering thc unansq'cred questions
in cornputcr generation of traditional music could also hclp to answcr the many (nos?da)T unas\cd 3nd) un3nsnered
fun&mental qucstions in thc ficld of algorithm.ic composirion.
ln fact, it would not be dcsirable to aln'ays satisfy a heuristic such as continuing a linear progression, because a piece
consisting mercly of scales could cruue from srch a practicc. Hcuristics are lhercforr only mcanin$u! in conjunction
TiUl constraints lhat prrvent them from bcing satisficd all the tirne.
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solution pal.h away-from a large number of unrnusical patterns; if tbere were no beuristics, unnrusical
patterns would probably be generated by tlre bundle, would have to be pairstakingly diagnosed, and
tben carefully ruled out witl'r potentially conrplex corxtrains. Thus, a system based on beuristics can
get alvay with less coDstnrints and/or less complex corstraints tban a similar system based on random
search. However, in case the research goal iself is to make a fair measurenrent of the musical power
of a set of absolute rules, then heuristics cannot be rxed, since beuristics strongfy bias tbe solution
path to$'ard a panicular style, whereas randont scarch can produce a relatively unbiased selection
among all the possible solutions tbat are accepted by the nrle sel

3.7.5 An dgorithmic problem with heuristic ordcring

As described in the previous section on the operational details, heuristics are strictly prioritized in the
cborale program, and tied to a backfacking scheme. This strict priority scheme is easy to undentand
and debug, and avoids dealing witb problerns associated with arbitrary numerical weighting schenres.
It is also quite ricb and expressive, because tbe prioritized beuristics have tbe generality of BSL for-
mulas. However, there b an algorithrnic problem associated with the stack based backtracking
scheme and tbe heuristic ordering. At a given stcp, the beuristics may make an erroneous estinrate:
i.e. tbe itent that the heuristics choose iunong tbe possibilities for adding to the cborale may not be
on tbe patb tbat leads to tbe best completion of the parfial chorale. The reason such an error is pos-
sible is because beuristics typically depend only on a sirupte local propeny of tbe panial solution, and
the itenr to be added to it. lf tbe erroneous choice leads to a blind alley, the choice will eventually
be undone by tbe backtracking mecbanisnr. However, a locally good choice dictated by tbe beuristics
may also later force a mediocre passage, wl:iclr could bave been avoided by a different, perhaps lo-
cally bad choice, or a locally good choice may force the program to miss a clich€ or other "desirable"
progression, which would not bave been missed by a different, perhaps locally bad cboice. Although
such problems could be remedied by nraintaining a priority queue of panial cl:orales, sorrcd by a nrr-
mericalevaluation function [Nillsoo 71, 80, ltnatT6], and/or by using heuristics with severallevels
of lookabead, we preferred to keep tbe conceptual simplicity of BSL's stack based mechanisnr, and
we used additiooal constrainB in an attcmpt to provide remedies for tbese problerns. In tlre cases
wbere we understood rbe precise pattero tbat made a passage mediocre, we rnade mediocre passages
eilher uoconditioually forbidden, or conditionally forbidden, via constrains of the fornr "patterD x is
not dlowed", or "if pattem r could bave been avoided, tben it sbould have been avoided", respec-
tively. As for the case wbere a locally good choice misses a futurc cliche opportrtnity, whereas a lo-
cally bad cboicc does not" we used a conditional backtracking scbeme to provide a selective degree
of heuristic lookalrcad: Wbenever tbere is an opporlunity for a cliclre progression, lhe cborale pro-
granr first prefers to generate tbat clichi and enters a clichC state, while in that state, tbe clichi nrust
be at least partially fulfilled; if tbis is oot possible the progranr will backtrack to tbe originaring step
wbere it will not eorcr tbe same clicbe stai€, and perbaps choose what is best according to the local
beuristic criteria.

3.7.5 How hcuri*ics c2n be fould

Now u'e come to the problem of finding heuristics.

One ntajor source of heuristics are tbe preferences of general good counterpoint practice, such as
moving by step rather tban by skip, avoiding follon'ing a scalar motion by a skip in tbe sanre direction,
etc., wbich a counterpoint treatise will tell us in sonte probably unalgorithnric recipe [e.g. Koechlin
26]. Tbe knowledge base designer nlust possess tbe mininal ability of making such preferences pre-
cise and algoritbnric in a reasonable way, using bis or her musical judgement.

Another source of beuristics are the chorales tbemselves. These are style-awareoess heuristics, and
roughly correspond to tbe infonnal knou'ledge acquirecl by a contposer u'lren he or slre sets out to
understand a style. These heuristics are developed by obsen'ing a very broad range of chorales.
Examples of such beuristics is to follos' a srspe nsion by another in the same pan, and to prefer cer-
tain recurring pattems, we cart call them Bacb cborale clichds if you u'ish. We see, in chorale no. 22
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below, an example of tbe repeadDg suspensioo pattem in the fint measure, and in tbe 4th measure
we see a clicbC progression, a cadence cliche in this case. Tbe cborale program cureDtly knows I I
sucb clicbC progressioos. However, getting sucb recurring patt€ns to be usd is a different and less
predictable Eatter within tbe extremely intense oompuration of cborale generation, since wbenever
tbe use of a pattero is seemingly appropriate, it may result in e.9., a forbidden melodic motion in an
bner voicc in an unexpected way (being more rrulnerable to accusatioos of unrnusicality, our prograst
is more concerned with melodic motion in rbe inner parts than Bacb is).

A third aod valuable souroe is band simulation of an algorithm in :rn attempt to geDerate specific
cborales exactly as written by Bacb. This exposes 3ll ds1ailc,, calses one to find tbe plausible reasons
underlying eacb cboicc and dlows postulating priorities for beuristics. For glanrple, the beuristics
behind the first two measures of Jesu tneinc Freude can be explained as a @ncem to move by step
and continue a lioear progressioo in tbe bass aod in tbe otber par6, aDd to prefer a cadeoce clicb€.
Tbe layout of the cbords are affected by a preference to prefer triads to seventb cbords and to double
tbe root in triads. Tbe insened diminished seventb on tbe weak eighth beat bf fte third chord is ex-
plained as a desire at the fill-in view to cbange tbe plagal progression IV-I in the skeleton to one of
Lbe more desirable VII-I or V-I progressions. Tbe renson there is a suspension in rbe first measure
of tbe bass, is explained as a concern to hide the second inversion of a cbord, and a conce rn to con-
tinue eigbtb Dote Eovement:

We bave made these @ncerns heuristics in tbe cborale program. We can see an interesting applicatioo
of rbe beuristic about susperuions in tbe bass in a very different coDtext at tbe end of tbe third phrase
of the somputer barrtonizxlion of cborale oo. 22 at tbe end of Appendix A (tbe earlier version).
Unfonunately, tbere are cases wbere we canDot find any plausible rezlson for cboosing s€rtain pos-
sibilities ratber tban othen, or sometines a cboicc that appean to be locally bad is made by Bach.
Sucb situations end to agree witb tbe backtracking searcb model. However, because of the labor
intensive nature of sucb very detailed band-simulation, conclusive results for validating tbe back-
uacking search model of composition can only be reached by drastically restricting tbe corpus. We
were not primarily interesud in validadng a cognitive model for a composer, so u'e did not pusb far
enougb in tbis direction. However, we feel tbat explicating $e decisions made during such an algo-
ritbmic resynthesis of a piece could be an instructive future research direction to pursue in tbe field
of music analysis, tbat is likely to yield resuls of profound nature.
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3.7.7 Eootional content of computer-composed music

lD this section, a final remark must be made about some ooulmon miscooceptions about tbe
"emotional @ntent" of music generated by computers. Often it is taken for granted tbat mecbanical
music cannot have emotionat contcnt- Unfortunately, existing comput€r generated compositioos in
tbe traditiond style sometimes confirur this opinion. Howevcr, tbe factor rcsponsible for tbe apparent
lack of feeling b more ofteo tban Dot an inadequate program whicb lacks tbe knowledge base to
cbaracterize a sufficiently sopbisticated style. ln dl cases of practical interest, tbe set of pieces in the
desired style with tbe desired feelings is finite, thrs tbere is oo inherent tbeoreticd problem against
an algorithnic description of mwic witb emotional content.a A study by [Meyer 56] ties emotioD to
@ncret€ musicat events, sucb as tbe delaying of expectations of cbordal and melodic progressiors.
Tbe wbole burden is tberefore on tbe erpert system designer, wbo must dgorithmically encode tbe
emotional coDtent in rules and/ot beuristics, wbere we :ue assuming that the set of desired solutions
largely overlaps tbe set of sotutions witb emotional content. This is no small burden, bowever. In
fact, actual composition of music'in any decent styte is invariably easier tban cbaracterizing precisely
what that style is in terms of concrete attribut€s, and such characterization att€mpts appear to be
limited to styles that are well understood. Wbat is well understood is of course sricdy dependent on
tbe competence of tbe knowtedge base desigoer, however, cacb knowledge base designer may also
have a lirnir tbat applies to him or ber: sometimes compositional ideas discovered after lengthy un-
conscious search are Dot well uoderstood, tbese ideas, similar to sufficiently hard proofs, unfortu-
nately tend to be tbe most valuable ones. Tbus, it is unknown to wbat extent buman compositional
ability can be algorithmically replicated. Hon'ever, tbere is no obstacle againql sstallishing higber and
higber staodards in dgorithmic composition, iD fact, substantially higher tbao the existing Donns.
Moreover, large knowledge bases in an efficient computing environment bave ao encouragi-ng
synergistic effect tbat sometimes transccnds tbe naiveness of the individual des and heuristics ll-enat
16,82f.

Note, bowever, tbat tbe fact tbat some knou'ledge base designer may be able to eocode emotional
cont€Dt into nrles and beuristics does not necessarily bring about a satisfactory explanation of emo-
tioos tbemselves. For a scientific study of enotiors tbemselves from tbe vien'point of anificial intel-
ligence, more klowledge about tbe dehiled operation of tbe buman brain would pcrhaps be desirable
rhen i5 known at preseDl [Minsky 80J is an attempt to model bnman memory along u'ith emotions.

3.7.E On eipert sJstens thet discover their own rules

Twenty five yean ago, tbe goals of Artificial lntelligence were mucb more ambitious than today's
knowledge engineering approacb Beigenbaum 79]. Even in early expen-system-like programs

lSamuel 63], a program had to learn at least some of is knowledge, siDce telling a program everything
that it needed to know to solve a problem was oot considered AI. at tbe time: researcbers were
certainly interested in solving problems, but tbey were apparently also concemed about proving that
machines could be intelligent. One could consider if we could go back in time to tbe cballenging re-
scarch goals of twenty five yean ago, and urite a music expert system that, totally ignorant of the
beritage of music theory, would discover its own musical production rules, constrailts and beuristics

[Hofsudrcr 79,t2J, p.riap6 overly impressed by an o)der topic in recursive function thcory. belicves lhat eorLs of art
mrst bc e productivc sct, ic. givcn any algorithm, a wor\ of an rhat is not gencratcd by this algorithm can bc found, or
tlrc elgorithm can bc shonrr to gencfiite a non-wor\-of-an. For t}e casc of music, wc fccl that thc scr of all "picces" that
can bc cncodcd via digital recordings of some fixcd sampling ratc, and tiat laIc less than a reasonable tirne limit is a
saGfactory supcnser of thc sct of intcrcsting mrsic. The finiteness of this othcntse huge sct docs not of coune make
the dbcolery of a practical algorithmic description of music lcss difficult, it mercly poins out that producriveness is an
incorrcct modcl of lhc true difficu.lty. Abo, even if s,e morncntarily acccpt that wc are dcaling with an infinjtc sct,
Hofsradter's choicc of zprcdtaivc sct (rarhcr than, say, zn innsnc scl) acrually works eg'ainst the point he q'ants to
rnake: a productive sct has rn infinire recursivcly cnumerablc subscl lRogers 67], rtrich by Hofstadter's hlpothesis
would mcan that thcrc exists an algorithm whjch will producc infinitely many differcnt qrorks of an. but ncver a non-
sorf,-of-art! Notc, howcvcr, that thc conicturc that art objccts, lil:c thc tnre sentcnccs of a sufficiently complex formal
systcm. ouldbc a producrivc sct, s?s indccd clcgant in is oe.n righl q'hcn thc rcpcrcussioru of Godcl's incompletcness
tlteorem wcrc stmng [Myhjll 52]; thus, this particular stance of Hofstadtcr is marrcd primarily by its bad timhg.



from scratcb, or from a set of example worls. Now, simple probabilistic models such as Markov
chains [Hiller ?0J are already known to be of timiad value, aod concept learuing, induction and
aoalogy methods [Ubr 73, Banerji 69, Hunt, Marin and Stone 66, Plotkin 70,71, Winston 75, 80,
Yere 77, Banerji 79, Quinlao 84], are knour to be difficult to use witb tbe extremely cooplex con-
cepts inherent io mwic, even if tbe negative examples reguired by some of tbese metbods were pro-
vided, and tbe representations were carefully planned: So we may as well try to directly give our
program ad boc constraints and beuristics about bow to discover constrainB and bcuristics. Unfor-
tuoately, we appeiu to have very poor introspective powers about bow we discover nrles and
beuristics for solving non-trivial problems: I-enat, wbo was able to eDunerate Eore thaD 200
beuristics for producing sequences of interestiog conjectures in elementary matbematics in his A.M.
program [L:nat 76], could only find several beuristics for producing beuristics for producing solutions
of problems similar to tbat of A.M. ll-enat 82J. More deeply nested irtrospection, sucb as discovering
beuristics for producing beuristics for producing heuristics ... for performing intelligent tasks, could
potentially be more dilficult (altbough defining a subset of the ordinal numbers with nested levels of
iocrospection would be interesting). Doyle lDoyle 80J discrxses tbe analogous possibility of building
aD expen system tbat is capable of reasoning abour its ourn reasoning about ... its own reasons for
pcrforming an action as pan of an intelligent task. We see ambitious band-crafad expen syst€rrs
sucb as A.M. and tbe present ooe whicb take tbeir power directly from tbe domain-specific researcb
of tbeir designers; and tbe tbeoretical inqurry into meta-level expert systeuu, ils two fruitful directions
to press foru'ard in anificial intelligence, altbougb we presently do not see meta-level researcb in
non-trivial domains as a short-term project

3.t A fonnal tbeory of voice-leeding

Tbe Scbenlierian analysis section of tbe cborale program's knowledge base, unlilie the barmonization
part, does not benefit from kaowledge accumulated through centuries of musical experience.
Scbenlier, after a lifelong researcb that led to his "Free Composition (Der freie Satz)" [Scbenker 79],
was able to verbally describe the different ingrediens that make up a series of legal analytic graphs
that represent tbe deep voice leading structure of a musicat piece, but was unable to provide any
precise absolute rules tbat indicate n'hicb analytic grapbs are unacceptable for a given piece, or
beuristics tbat indicate whicb analytic grapbs are preferred Moreover, tlre problem of formally re-
preseDting a Schenker grapb is already a formidable one. Textbooks on Schenkerian analysis tend to
teacb by example, and it is not fully agreed upon that such textbooks provide a loyal rendition of all
irpects of Scber*er's difficult work. Tbus rbe analysis part of our program was not only a difficult
A.I. problem (witb regard to tbe computational represeDtation of analytic knowledge), it was also a
foruridable basic researcb problem in music. Wbile making repeated attempts at uanslating rbe
grapbs in Der freie Salz to a foroal notation, we eventuaUy found a small set of rewriting nrles that
capture wbat we think is tbe gist of Scbenker's theory: a hierarchical theory of deep linear
progressions, i.e. linear progressions u'bose Dotes :ue not adjacent in tbe music. We tben decided not
to tacUe tbe problem of making a loyal translation of tbe Scbenker graphs, but instead to work n'ith
tbese precise rewriting mles of our owD.

Tbe core of our tbeory consiss of a set of rewriting rule scbemata [n our tbeory, unlike ll-erdabl and
Jackendoff 83], tbe descant and bass are analyzed separately, because we feel that there is no otber
way to capture tbeir independent deep linear progressions. Tbe pane tree obtained by repeated ap-
plications of these rewriting rules to a staning patt€rn uDtil tbey can no longer be applied, 6oplsins
tbe sequeoce of pircbes of tbe sopraDo (or bass) at its termiDal oodes. The separate uees for tbe
descant and bass, plus a set of ordered pairs coolecting tbe rerminal nodes of tbese trees (analogous
to Scbenker's diagonal lines) constitute tbe analysis of tbe cborale. Tbe grammar does not generate
information as to u'hicb note of the bass comes undemeath whicb note of tbe soprano: tbis infor-
mation is already supplied by tbe muical surface, and the purpose of tbis grarnmar is to provide a
hierarchical structure for tbis surface. We give bere tbe gramnar in its present state. Tbe variables
.x.1'"2 appearing in tbese renriting rule scbemata range over diatonic pitches (integers decoded as
7'octave no. + pitch name). Tbe corstnrct (n x) is tbe only termi-nal symbol scbema, and indicates
an actual notebead of tbe final piece. Tbe oonstruct (sxy) corresponds to an analyic slur betu'een
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the notelreads for pitches .r and;', wbicb are typically tbe sante or are a step apart. Tbe construct (lp'

.xy) typically staods for an analytic slur over a linear progression leading from pircb.x to pitcby. Tbe
oonstrucLs (td -ry), (dt x.1'), occur only in tbe bass and express analytic slurs from tbe (relative) onic
to the dominant, and dominant to tbe tonic, respectively, within tbe context of a bass arpeggiatioo
(ronic-dominant-tonic pattern) [Scbenker ?9]. Tbe staning pattem scbema for tbe descant is seen
to resenrble tbe fundamenul line of Schenker. Tbe starting patt€m schema for the bass is seen to re-
scmble the bass arpeggiation within a Scbenkerian fundamental structure. ln these rule scbemau,
(X)' means zero or more occurences of (X).

(s r l) +
(n))

(lp .x z) (n y)
(lp .x.?) (s z z)' (lp z y)

s'bere second 5 lr-z I Soctave, or
secood5 ly-: I Soctave

(nzr)  (s 4zr) '  . . .  (nz^) (s zrz) ' ( lpzry)
(ozr)  (s 4zr) ' . . .  (nz.)  (s zrzr) ' (oy)

wbere ,t > 0,4 moves to.z,*r by jump,
i-0,...* - I.

(td x z) (s z z)' (dt z y)
wbere tbe voice is bass, z=x+fifth(mod 7), r=x(mod 7).

(lp xv) +
(s x x+second) (s.x+second x+second)' ... (s/-second;') (s-t')') ' if x (y

I (s x r-second) (s x-second x-second)' ... (s-1'+secondy) (sll)' tf x ) I
l (sxf)  i f  x- !

( tdrr)  +
(s xy)
I (lp xr)

(dtx l )  +
(s ry)
|  ( lp. tr)

Shning patterD for descant:

(S) t
(o tonic+i)
(s tonic+i tonic+i)'
(lp tonic+i tonic)
(s tonic tonic)'

wbere i is one of {third, fiftb, octavel, and lonic raDges over pitcbes.



Starting patt€rn for bass:

(S) t
(n tonic)
(s tonic tonic).
(tA tonic ronrc+fifrh) (s lanrc+filtb ronr?+fifrh). (dt ronic+f'fitb tonic)
(s tonic tonic)'

wbere lanrc ranges over pitcbes. Tbe constanB second, third,... stand for 1,2,... respectively.

Some transformations on tbe rigbt hand side of tbe rewriting rules are allowed in tbe above grammar.
At any time during a conceptual top don'n generatioo of a melody, such tran<fonnations may be ap-
plied to a rewriting rule, before tbe rewriting rule is used. Tbese Lransformations essentially amounr
to adding Scbenkerian register transfer to tbe tbeory. Any w tbat appears in rhe cont€xr

(s . . .  r)  (g w.. .) ,
(n p) (s rc. . . ) ,  or
(q .-. n) (s ry...)

wbere 4 is one of {s, lp, td, dt}, can be replaced by w+octave, or }e-octave (botb occurrences of w
must be replaced sirnultaneously by the same value). For example, a tegal application of sucb a
transformation to tbe (s... g3)(dt 93 ...) pattern on tbe rigbt band side of tbe reuniting rule (s c3 c3)
; (td c3 e3)(s g3 g3Xdt 83 c3Xr would result in the rewriting rule (s c3 c3) ; (td c3 g3)(s g3 g2)(dt
92 c3)- Tbe rigbt band side of tbe rule scbema (lp r f) + ... has to be treated specially, bou'ever:
Fintly, an (lp ry) wbere x >)'may be elaboraed as an ascending linear progression tbat reacbes its
goal by descending register transfer somewbere along the way, and sinilarly an (lp x;') wbere x (.,1',
can be elaborated as a descending linear progression. Moreover, c€rtain notes io a Unear progressioo
may be omitted, giving rise to third skips. To make tbese transformatiors precise, we reunire tbe first
two alternatives of tbe (lp r y) rule scbema below, in a way tbat already allows tbe effect of such
trarsformations.

(lp ty) +
(s z1,q:r,1) (s 41212)... (s 4rr _t zryr\

(s.e,,6 zn,1) (s zn1 z,r) .-. (s z^,rn _t 2^,*,)

wbere

z>0&x-zr,o&y-znJ.n&
(3i e Isecond,-secondl)

(V7l l5rr '5n)
[&/>0 & U < z + 261-2pt,o) &

fz,1=2,,s+i (mod 7) y 2,,1-2.,,s+i+i)&
(y n | 1 < m <k,)lz r.4 1a+r (mod 7)ll.

As an example,

(lp a2 e2) + (s a2 c3)(s c3 d3)(s d3 d2)(s d2 e2)

ln this rcpon *c e'ill be using an ascii notation for rnusical notes, consisting of a pirch namc (c.d.e,f.ga or b) follosed
by rn optional accidcntal (g or b). follos'cd by an ocbvc numbcr. ln rhis norarion, c4 maans mjddlc C. M is rhe B a
ssvendt abovc it. c5 is the C an oclave abovc it. f*4 is the F-sharp a founh above rniddle C, bb4 js r}e B-flar a sevcnrh
ebove rniddlc C. In thc renriting rules this noration (e'ithour accidcntals) r'ill somerimes bc used for abbreviarinc in-
t€gers thal r€present diaronic pirches.
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would be a legal irstance of rhis rewriting rule scbem4 where a2 reacbes rhe lower oote e2 via an
ascending lioear progression, by virtue of tbe descending regisur transfer (s d3 d2)(s d2 e2), and
wbere tbe b2 of tbe linear progression bas been omitted, giving rise to tbe third skip (s a2 c3).

Tbe parse Fees produccd by tbese productions bave a corresponding slur-and-notehead notation,
similar to tbe analytic grapbs of Scbenker. Tbe parser implemenad for tbe gr:unmir is cssenrially
bottom up [Abo and Ullman 77J, and outputs tbe nodes of the pase tree in postorder.4 Tbe sequence
of symbols outputed during tbe successive steps of a paner can be traoslated to tbe slur and notebead
DotatioD via tbe following simple rule: Wbenever a symbol (o x) is outputed by tbe parser, the
notebead conesponding to r is drawn. Wbenever one of (s x).), (lp xl), (td x,'), (dt xy) is outputed
by tbe parser, an analytic slur between tbe notebeads for x and y are dranr. Note tbat the grammar
allows multiple slurs to be draun between two notebeads, but tbese slun are drawa on top of each
other and appear as one slur (in practice, rhis does not carse a problem in understanding an analysis
wben using a slur-and-notebead diagram). Wbere tbe variables xJ'J, occur in tbe nrle schemata, the
parser actually outpub tbe sequence number of a pitch within tbe input sequeDcc of pitches rather
tban the pitcb iseU as tbe grammar implies, so no special computation is necessary to avoid mixing
up differeot notebeads with the same pitch, wben drawing tbe slurs.

We give berc some exanples as to bow rewriting nrles relate to slurs and noteheads. A production
(s d5 c5) * (lp d5 b4) (n c5) would stand for a slur between d5 and c5 at tbe top level, and a de-
scending tbird progression staning on the d5, at tbe lower level. This is tbe typical parsing of an
eoding pattern in Scbenter. In tbe analysis of Cborale SL Antonii by Scbenker (No. 42/2|.a Der freb
Satz - afso in oo. 34/a) we can observe several occulreDces sf rhis ending pattem. The slur-and-
notebead diagram corresponding to a particular elaboration of this pattern is given below, followed
by the list of productions tbat correspond to it:

(s d5 c5) - 
(lp d5 b4) (n c5)

(lp d5 M) * (s d5 c5) (s c5 M)
(s d5 c5) 

-  
(n c5)

(sc5M)*(nb4)

(n d5), tbe notehead for d5, would be generated by a symbol that prec€des tbe top-level (s d5 c5),
but we nevenheless placed tbis norcbead in tbe diagram so tbat tbe slurs (s d5 c5), (lp d5 ba) and (s
d5 c5) could be connected to a notebead at the left end.

A production (s e5 d5) * (n aa)(lp a4 d5) similarly stands for the elaboration of a slur connecting
e5 and d5 witb n'hat Scbenker would call a motion from ao inner voice a4 leading to d5, as seen be-
low:

Butthcpostordcrcnurnerat ionisviolatedinasubt lccaseinvolv ingt f ierulc(sr7)4( lpr : )  ( lpzi l -sccAppendixB
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The productions corresponrling to tbe above diagram are:

(s e5 d5) * (n a4) ( lp a4 d5)
(lp a4 d5) * (s a4 ba) (s b4 c5) (s c5 d5)
(s a4 b4) 

- 
(n b4)

(s64c5) 
-  

(nc5)
(s c5 d5) 

- 
(n d5)

Again, (n c5) cannot be generated by (s e5 d5), but the notebead for e5 has been placed in tbe dia-
gram-

Notc tbat adopting tbe conveotioo of not drau'ing a slur for (s.;ry; u'ben tbe Dotebeads.r andy are
adjaccnt in tbe surface music would bave resulted in diagrams 'e'itb less slurs, but eur present coD-
vention about drawing a slur for every noo-terninal symbol is a more consistent one.

Our voice leading theory consists of a few typical middleground elaborations of linear progressions,
motions fronr inner voice, oeigbbor Dotes, limited arpeggiations, and tonicdominant-toDic patterDs
(bass arpeggiations), u'hicb are nevertbeless surprisingfy sufficient for parsing the loreground of maay
chorales. But a complete and loyal formalizatioD of Der freb.,Satz remails an open problem. In
panicular our tbeory does not accommodate tbe unbierarchjcal DestiDg of analytic slun in any given
single paning. We shall discuss tbe problems involved in formalizing Scbenlier's tbeory later in this
cbapter.

Tbe present procedure is geared toward tbe analysis rather tban syntbesis of rbe surface structure of
a musical piecc. We bad originally boped to take tbe dternate approach of topdown Scbenkerian
synthesis of a mrxical surface, but tbis approach was later deemed to be impractical because it in-
volves making commitments at an early program stage without knowing wbat these comrnitmenB will
exactly lead to, whicb can cause unnecessary backtracking wben attenpting to meet local consuaints
later oo

An imponanl subset of tbe above grammar has been implemented in tbe present parser of tbe
Schenkerian analysis view, which we wi[ call tbe cborale parser. However, tbe cborale parser does
not (yet) allow register trarsfer in the descant, or missing Dotes in linear progressions. Tbe chorale
parser, like tbe parsers for computer languages [Abo and Ullman 77], maintains a stack aod sequences
iself tbrougb a set of states while it sc:uls a striDg of Dotes iD is input. Tbe purpose of tbe parsing
algorithm is to reduce a descant line to a descending li-near progression, or to reducc a bass line to a
bass arpeggiation. Linear progressions can be sballow, as il a scalar motion, or tbey can be deep,
witb otber Dotes getting in betweeu the Botes of tbe lisear progression. Tbe cborale parser op€ration
can be explained by the following example: wben tbe curent input pitch fails to continue tbe current
linear progression (e.g. if it jumps), the parser may push down the current state, and enter a different
state. Wben tbe expected cootinuation of tbe intemrpred linear progression later appears, tbe stack
may be popped, restori-ng tbe state tbat existed wben tbe linear progression was intemrpted, after
drau'ing slurs (i.e. outputiog nodes of tbe parse uee) to close any lilear progression tbat was in
progress before tbe expected continuation was seen. At a given step tbere is usually more tban one



actioD to perfonD, each of wbich would poteDtially yield a different parse tree. Tbe most plausible
acdon is algoritbmically chosen by mearu of prioritized beuristics, as in rbe rest of the cborale pro-
gram views. Tbese beuristics, unlike tbe grammar iself, do take regard of tbe melodic, rhythmic and
barmonic context of pitcbes. For example, ooe beuristic declares tbat if tbe Dote followiDg tbe current
Dote is aD expectation of a linear progression tbat was prsbed down, and if it is a bigh comer (a local
pitcb maximum), tben it is undesirable to reduce (i.e. pop the stack) in tbe current step. We see an
application of this beuristic to a variant of tbe melody line of Jest meine Frcude in tbe figure. Tbe
linear progression that started at 95 f#5 e5 has beeo incmrpted, aod Dow, above tbe arrow, a d5 is
encountered, whicb is a possible continuation of tbat interrupted progression. Tbe heuristic says tbat
it would be undesirable to really consider tbat d5 as tbe cootiDuation aod draw a slur from e5 to d5,
since rhe Dext note is a better continuation. Tbe better parsing is shown bere.

Certain absolute constraints on tbe pzlrse tree are used for ruling out absurd analyses, e.g. tbe main
linear progression musl agree witb tbe key of tbe piece. This would rule out analyzing a cborale sucb
as Jesu n'eue Freude ,,r'ith a desce nding octave progression, since tbe octave progression would be
dorian, not mioor. (This remark aboutJesu meine Freude was made in lForte and Gilbert 82].) The
operation of the cborale parser will be explained in greater detail belou', along witb an actual example
of tbe mecbanical analysis of a cborale.

Tbe reasoo we are usiog rwo separate parse trees for a single piece is because beyond tbe Ursatz-like
combination of tbe staniog patt€rns, tbe voice leading structure of tbe descant and bass appear to be
very indepecdeDt in the cborales This independence appears to be supported by Scbenker's ou'n
analyses, in particular, a si.milar independence of tbe descant aod bass can be obsened in Scbenlier's
own parsing of cborale no. 301 in Fire Graphic AnalSses [Schenker 69]. V/e felt tbat adding some
starting producrions to tbe tbeory wbere tbe fundamental line and tbe bass arpeggiatioD would appear
togetber would Dot lead to a more interesting parsing of tbe chorales, and we tbus made the decision
to make the parse trees independent altogether, u'itb tbe diagonal lines lining tbem up wbere Deces-
sary. However, diagonal fines are used infrequently iD tbe cborales, often for tbe sole purpose of
connecting tbe first structural oote of tbe fundamental line witb tbe first note of tbe bass, when they
do not come underneatb eacb otber because of ao initial ascent (like in Der freie Sax no.20/4,
Mozart, Sonata in A major, K. 331, 2nd movement). Additional structures beyond tbe diagonal lines
and the relative surface positioru of tbe bass and descant notes nlay clearly be necessary for corre-
lating the bass and descant in more complex musical pieces; bowever, for tbe cborales, the omission
of sucb structures appeared to be barmless, and allowed us to construct a more streambned voice-
leading theory.

Tbe cborale parser has a metbod of dealing with tbe initial ascent or unsupponed stretch, in a u'ay
tbat does not require special treatment. Tbe parser zrssumes tbat tbe descant is preceded by ao im-
aginary pitcb equal to a guess for tbe first stnrctural pitcb (a third, fifth, or octave above the tonic).
Tbe bass is also assumed to be preceded by an imaginary tonic note. Tbus, in tbe descant, an inirial
ascent is like a motion from an inngl v6igg. A guess for the imaginary descanr pitch tbat is too bigh,
bowever, can cause tbe entire descaot line to be parsed as pan of an initial ascent, leading to back-
trackiag later on. Note tbat this is not really a defect of our tbeory, and is justifiable in a one-pass



algoritbn sucb as tbe present one, since an inirial ascent iself may have enough structure to be an
entire piece per s. To avoid tbe searcb tbat would ensue from a \rrong guess, we are presently letting
tbe fundameDtal progressioo (tbird, fifth, or octave) to be specified along wirb tbe ioput cborale.

In order Dot to bandicap ourselves with a requirement of presenting only tbe computer-generated
analyses, and ro give ourselves a fair chance of demonstrating the analytic power of our voice leading
theory, we will provide below tbree band-made analyses, of tbe cborales no. 210, no. 165, and a
fragment of Mozart's piano sonata K. 331. Tbe analysis given for each piece is in rbe form of a se-
quence of reu'riting nrle applications tbat generate the bass and tbe descant, preceded by the slur-
and-notebead transcription of tbis sequence. In tbese reuriting nrle applicatiors (productioos), each
diatonic pitcb is sbown:N a Dotenane paired to its sequence number in tbe piece by a bypben. Tbis
Dotatioo allows to uDiquely indicate wbicb symbol appearing in tbe rigbt band side of tbe previors
productions tbe left band side of a given production correspoods to. Tbe Dotation also belps to cor-
relate the non-terminal symbols witb tbe slurs in tbe slur-and-notehead diagram. For example, tbe
symbol (s M-2 b4-7) appearing io tbe descant productions of no. 210 conesponds to lhe slur be-
tweeD tbe M with sequence no. 2 and tbe b4 with sequeDce no. 7 il the melody line of tbe slur-and-
notebead diagram. Tbe rni<sing notes of linear progressions are showa in parentbeses wbere
appropriate, and in no. 165, the inner voice d4 is taken to be tbe final note of tbe descant, following
Scbenker. The imaginary fint notes of tbe descant and bass are assumed to have the sequence
number 0. In tbe analysis of cborale no. 210, all productions are shoun in full detail. ln tbe remaining
pieces, obvious productions of tbe form

(s 4-n xrn + l) * (n rr-r + l)
( lp t -n rr-n+t)  *  (s xo-n xfn + l ) . . .  (s:r . - r -n +k- l  xr-n+k)
(td r6-n .rt-n + l) - 

(s xo-n xr-n + l)
(dt r6-n rr-n + l) * (s 4-n xr-n + l)

bave been omitted, Also, in cborale no. 210, a few surface omamentations bave been removed from
the melody line before tbe analysis. After presenting tbese band-made analyses, we will denonstrate
tbe more limited mecbanical analysis capabilities of our preseDt Scbenkerian knowledge base, via a
script describing tbe stcp'by-step operation of tbe cborale parser on tbe oelody line of cborale no.
57.
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Analysis of chorale no.2t0
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cHoRALt No.2r0
DESCAhIT:

(S) 
- 

(n ba-0)(s M-0 ba-l Xs M-t bil-2Xs brl-2 ba-7)
(s D{-7 D,,-3 | )(s D4-31 b{-32)(s ba-32 ba-33xtp b{-33 Ga-37)

(sM-{l  ba-t) -  
(n b.-I)

(s ba-l b,-2) - 
(r M-2)

(s M-2 ba-7) 
- 

(b b.-2 ot-O'nb4-7)
(F M-2 ca-5) - 

(s b.l-2 .4-3Xs r4-3 g,l-l)(s g{ I tt4-srF Ita-S a/-6)
(s b4-2 ra-3) - 

(a ef-3)
(s il-3 8r-6) - 

(n t4-a)
(s 344 ltl-31 

- 
(n ft,l-5)

(s lf4-3 c,{-6) - 
(n a,-5)

(s b.-7 b.-31 ) - Gr b{-7 s5-15)0p g5-lS b4-31)
O b.-7 g5-15) 

- 
(s M-7 c#s-t)(s cf5-t d5-9Xs d5-9 dfs-t2)

(r dsS-l 2 c5-l3Xs 15-13 f$s-laxs f*5-l l  g5-15)
(s ba-7 ctS-t) - 

(r c35-t)
(s d5-t d-+9) - 

(o d5-91
(sds-9 dt5-12) -  

(bd5-9 cs- l tXbe5- l l  d5- l2 l
(b ds-9 cs-t l )  -  (s d5-9 e5-l l)
(s d5-9 cS-l |  )  -  

(o M-t0) (o cS-l t)
Q c5-t I dt5-12) - 

(s c5-l t dis-t2)
(s c5-l t  d35-12) - 

(r df3-12)
(s d1t5-12 c5-13) 

- 
(a e5-t3)

(s c5-13 rts- la) - 
(n f35-la)

(s t ts-1. s5-15) - 
(o g5-15)

(b C5-15 b4-3 I )  -  
(s 93- l5 f$5-t 6)(s f f5-l  5 c5-17)(s e5-t 7 e5-2E)

(s c5-2t d5-29Xs d5-29 cf3-30Xs ct5-30 ba-3 t )
(sg5-15 Es-16) -  

(nfs5-16)
(sf tS-16 c5-17) -  

(n c5-17)
(s c5-17 c5-2t) - 

(a b4- I  tXs b. l-  t  t  b4-l9Xs b4-19 bl-2 l)
(s M-21 b{-2{)0p b{-24 c5-2E)

(s b4- l t  b4-19) -  (u M-19)
(s b4-19 b{-21) -  (F bc-I9 d-20)(h c5-20 b4-21)
(b bJ-19 d-20) - 

(s b{-19 d-20)
(s b.a-19 c5-20) - (o d-20)
(b c5-20 b{-2I) - 

(s c5-20 b{-21)
(sc3-20 ba-l1) - 

(n b4-21)
(sb!-21 b4-24) - 

(h b, l-2t g4-23)(o M-24)
O M-21 S{-23) - 

(t b4-21 t4'22)$t4-72 34-23)
(sb.f-21 r/-221 - (oel-22)
(s.4-22 ea-73) - {n g.a-23)
(b ba-Za c5-lt) - 

(s b.-2a cf3-25Xs ct5-13 d5-26Xs d5-26 e5-2t)
(s ba-2. c'S-251 - 

(o cf3-25)
(s ct5-25 d5-26) - 

(n d5-25)
(s d5-26 c5-lt) - (r M-27)(a c5-2t)
(se5-2t d5-29) - 

(o d5-29)
(s d5-29 cr5-30) - 

(o cf5-30)
(s cJ5-30 b4-3 t )  -  (r b4-3 |  )
(r b4-31 b{-32) - 

(n b4-32)
(s M-32 M-33) - 

(o M-33)
(b M-33 et-t7) - 

(s b{-33 r4-3{)(s r4-3{ ga-35)(s g{-35 t*4-35')
(rfsJ-36 ea-37)

(sb4-33 r4-3a) - 
(n r{-34)

(t ra-3a 3.-35) - 
(n g.-35)

(s94-35 114-36) - 
(n ft4-35)

(s f94-35 aA-37) - (o cA-37)

CHORALE NO.2IO
BASS:

(S) 
- 

(n c3-0Xs c3-0 c3-l Xs r3-l c3-7Xs al-? c3-t)
(r a3-t c3-I 4Xs c3-l  {  c3-2{)(s c3-21 c3'23Xs e3-25 e3-39)
(s e3-39 c3-{a)(rd e3-aa b2-a9xd( b2-,a9 c3-50)

(se3-0 e3- l )  -  
(oe3- l )

(s c3-t e3-7) - 
( ld e3-l  b2-6)(dr b2-6 c3-7)

(tde3-l bz-6) - 
(sc3-l  bl-6)

(s c3-l  b2-6) - 
(b e3-l  r :-s)(b r2-5 b2-6)



O e3-l r2-5) - 
(s e3-l d3-2Xs 4l-2 c3-3)(s cl-3 b2-{Xs b2-{ r2-5)

(s c3-l d3-2) - 
(r d3-2)

(s d3-l c3-3) - 
(n c3-3)

(s e3-3 b2-4) - 
(r b2-C)

(t b2-,a e2-5) - 
(r r2-3)

(b d-5 b2-6) - 
(s d-3 b2-6)

(s r2-3 b2-6) - 
(r b2-5)

(at b2-6 c3-7) - 
(s b2-6 c3-7)

(3b2-5 c3-7) - 
(ra]-7)

(sc3-7 c3-t) - 
(o c3-t)

(sa3-t c3-I,l) - 
(rrt-9Xb r3'9 e3-I4)

(}r3-9 c3-la) - (srl-9 g3-l2Xsg3-12 f$3-t3Xsf#3-t3 c3-ta)
(sr3-9 93-12) - 

(b r3-9 f33-l lXn gl-12)
Q a3-9 f;3-t t) - 

(sr3-9 g3-10)(s93-t0 f#3-ll)
(sr3-9 s3-10) - 

(a g3-10)
(s g3-l0 tf3-l t) - (o f*3-l t)
(sg3-12 ft3-t3) - 

(r fs3-13)
(sf i3-13 c3- la)  

-  
(o c3- l { )

(s e3-la G3-24) - 
( td €3-la b3-l txs b3-l t  b3-22xs b3-22 b2-23)

(d. b2-23 c3-2a)
(td c3-la b3-l t)  -  

(b c3-t.  b3-l t)
(F e3- l a bl-l t) - 

(s c3- ll ff3- l5Xs fs3-15 g3- I 5Xs e3- I 6 a3- t 7)
(sr3-17 D3-lt)

(s c3-ta f t3-13) - 
(a f t3-t5)

(st33-15 t3-16) - 
(r 83-15)

(s83-15 13-17) -  
( r13-t?)

( i&l-17 b3- l t )  -  
(aD3-l t )

(s b3-!t  b3-22) - 
(b b3-l t  cr- l9Xb c.-t9 b3-22)

(b b3-l t  cr '-rgl -  
(s b3-tt  ca-19)

(s b3-l t  c4-t9) 
- 

(r ca-I9)
Q ca-I9 b3-22) - 

(s ca-19 b3-22)
(s c4-19 b3-22) - 

(b cr-19 r3-2lXn b3-22)
Q cr- !9 r3-21) -  

(sc4-19 b3-20Xs b3-20 r3-21)
(s c{-19 b3-20) - 

(o b3-20)
(s b3-20 r3-21) - 

(o r3-21)
(i  b3-22 b2-23) - 

(n b2-23)
(dt b2-23 e3-2.1) - 

(s b2-23 c3-2d)
(r b2-23 c3-24) - 

(r c3-2a)
(r c3-24 c3-25) - 

(r c3-25)
(rc3-25 c3-39) -(b c3-25 33-2?Xsg3-2? 83-29)(s93-29 32-32)

(r s2-32 g3-33)(s g3-33 33-37)($ s3-37 c3-39)
(b c3-25 sl-21) - 

(s c3-25 t33-26Xs tt3-2 5 i3-27,
(s c3-25 ft3-26) - 

(r ft3-26)
(s fs3-25 e3-27, - 

(r g3-27)
(r 33-27 e3-291 - 

(! s3-27 rt3-2t l (b f#3- 2t S3-291
O s3-27 ft3-2t) - 

(s 93-27 t33-lt)
(s 83-27 tt3-2t) - 

(r fd3-2t)
(b ft3-2t t3-29) - 

(s ft3-21 g3-29)
(sff3-26 s3-29) - 

(o g3-29)
(s g3-29 12-32) - 

( td:3-29 d3-3lXdt d]-31 g-32)
(td g3-29 d3-31) - 

(s83-29 d3-31)
(s g3-29 d3-3 I ) - 

(r c-1-30)(b c3-30 d3-31)
(b c3-30 d3-31) - 

(rc3-30 d3-31)
(s c3-30 d3-3 | ) - 

(r d3-3 I )
(dt d3-31 t2-32) - 

(sd:3-31 g2-32)
(sd3-31 t2-32) - 

(oe2-32)
(sg2-32 s3-33) - 

(a g3-33)
(s g3-33 t3-3?) - 

(b e3-33 ts3-36)(b r*3-35 93-37)
(}93-33 fs3-36) 

- 
(s93-33 t#3-35)

(s 93-33 f53-36) - 
(ts 83-33 c3-35)(n f#3-36)

(b 93-33 c3-35) - 
(s gl-33 ft3-3aXs ft3-34 €3-35)

(sg3-33 ft3-3{) - 
(r f33-34)

(sf#3-34 c3-35) - 
(n e3-35)

(b fr3-36 33-37) - 
(s ff3-35 g3-3?)

(s f$3-36 33-3?) - 
(r g3-37)

$ s3-37 c3-39) -(s83-37 f*3-3t)(sft3-3t e3-39)
(s g3-37 fs3-36) - 

(n f33-3t)
(sf$3-36.3-39) 

- 
(n e3-39)

(s c3-39 c3-4{) - 
(.d e3-39 b2-a3xdt b2-{3 c3-44)
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(rd c3-39 b2-{3) - 
(s c3-39 b2-{3)

(s c3-39 b2-.13) - 
(D b2-40xb b2-.0 b2-43)

(} b2-a0 b2-{3) - 
(s b2-.0 b2-{3)

(t b2-{0 b2-43) 
- 

(td b2{0 tt3-42Xdt tr3-42 b2-{3)
(td b2-{0 I:3-421 

- 
(s b2-a0 f*3-{2)

(s b2-,f 0 I*312) - 
(r c3-a t XD e3-a I ts3-{2)

(ts .3-{l ts3-a2) 
- 

(s c3-ll f#3-{2)
(s c3-al 1t342) 

- 
(r fr3-{2)

(dt t33-42 b2-{3) - 
(r f€3-{l b2-{3)

(s l3l-12 b2-43) 
- 

(r b2{3)
(dt b2-a3 c3-aa) - 

(s b2-i3 c3-a4)
(sb2<13 t3-a,l) 

- 
(r c3-44)

(td €3-{a b2-49) 
- 

(s c3-44 b2-a9)
(i e3nl4 b2-49) - 

(b c3-4{ r2-a6XlP r2-{8 b2-49)
O e3-a4 12-46) - 

(s c3-44 d3-45Xs d3-{5 c3-a6)(s c3-45 b2-{7)
(s b2-{7 e2-at)

(s t3-4r d3{3) 
- 

(o d3-43)
(s d3-15 c3-a6) - 

(r s3-.16)
(s c3-a6 b2-47) - 

(r b2-a7)
(s b2-{7 r2-{E) - 

(n e2-4E)
(b r2-{E b2-{9) - 

(s r2-at b2-r9)
(s r2-aE b2-a9) - 

(! b2-{9)
(d. b2-{9 e3-50) - 

(s b2-49 e3-50)
(3 b2-a9 c3-50) 

- 
(r a3-50)
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Analysis of chorale no. 165
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Analysis of Mozart Piano Sonata K.33t
First movement. mrn. l-8
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MOZART PIANO SONATA K 33I
Iirs roorcoqrr antr l-t
DESCAT{T:

(S) 
- 

(o rs-Oxs c54 c3{Xs cS-l c5-5Xs d-5 c5-23)
(c c5-23 d-ta)(b .3-2a.1-36)

(s cS-{l cS-l) 
- 

(r c35-lXb d5-t .5-a)
(b cfs-t c5-4) - 

(3ctS-l d5-2)(sd3-2 c5-a)
(s d5-2 c5-a) 

- 
(D d5-2 c#5-3)(o cS-l)

(s e5-3 e5-23) - 
($ c5-5 b4-l9xlp M-t9 c5-13)

(b d-5 M-!9) -(se5-5 
d5-9)(sd5-9 d5-lOXsd5-10 ds-t5)

(s ci5_t5 b,t_19)
(s c5-5 d5-9) 

- 
(n b.-5Xlp b4-5 d5-9)

(b b.l-5 ds-9) - 
(s ba-5 crs-7xs cf5-7 d5-9)

(s cf5-7 d5-9) - 
(b cr5-7 ba-tXn d5-9)

(s d5-10 cfs-15) 
-  

(a r l - l  lXsra-t l  ea-t2Xb r4-12 d5-13)
(s c#5-15 bra-19) - 

(o c5-l6Xlp e5-16 b4-19)
(b M-I9 c5-23) - 

(r b,a-19 cr5-20Xs ct5-20 d5-2 t )(s d5-21 c5-23)
(sds-21 e5-23) - 

(bd5-21 cr3-22Xnc5-23)
(b c5-2a 14-36) - 

(s c5-2a d5-33Xs d5-33 c#5-34Xs cf5-3a ba-33)
(s brt-35 r4-36)

(sc5-2a d5-33) - O c5-2a ct5-32)(od!l-33)
(b c5-2. cl3-32)- - 

(s c5-24 d5-2t)(s d5-2t d5-29Xs d3-29 cf5-32)
(s c5-2. d5-2t) - 

(n b,l-25XD M-25 d5-2t)
(b b4-25 d5-2t) 

- 
(s M-25 ci5-26Xs cJ5-25 d5-2t)

(s c#5-26 ds-2t) - 
(b cs5-25 ba-27)(n d5-2t)

(sd5-29 ct5-32) - 
(o ra-30Xbel-30 c#5-32)

MOZART PIANO SONATA T.33I
BASS:

(S) 
- 

(s e3-l  r1-tSXs d-15 ..3-l  txs r3-l  6 r.3-30)
(td &l-10 c3-32Xs e3-32 c2-33Xdt el-33 eZ-3a)

(sr-3- l  r3-15) -  Ot3- l  t f3- l l ) (st*3-f  l  t33-t2)( lpf t3-1213-15)
(}a3-l  ts}- l l ,  -  

(sr3-l  S33-6)(sCs3-6ft3-l t)
(sd-l  e93-6) - 

(br3-l  cta-5Xngi3-5)
(h r3-l dit-Sl 

- 
(srl-t b3-l)(s b3-2 cta-{Xs cral 6a-S)

(sb3-2 ct4-{) - 
(b b3-2 r3-3Xrct{-l)

(s g13-6 f*3-l  t)  -  
(p gr3-5 b3-toXnft3-l  t)

(h c*3-6 b3-10) - 
(s gf3-6 r3-7)(s r3-7 b3-9xr b3-9 b3-10)

(s r3-7 b3-9) - (b d-7 gl3-t)(n b3-9)
(sr3-t5 d-l t)  

-  
( td r3-15 c3-t7)(dt c3-17 r]- l t)

( tdal-15 e3-t7) - 
(s13-13 c3-17)

(sr3-15 e3-17) 
- 

(a d3-16)(lp d3-16 c3-t7)
(s e3- | t &3-30) - 

(b r3-t t tt3-2t)(b fr3-2t 13-30)
(b 13-lE ft3-2t) - 

(sr j- t t  gl3-23xsgf3-23 ts3-2t)
(s 13-t t g3J-23) - 

(b r3-l t cra-221(o g$-23)
(b d-t t c*4-22) 

- 
(s r3- t t b3- 1 9)(s b3-t9 da-2 1 Xs cta-21 6.-22)

(s b3-t9 6a-Zl l  -  
(b b3-19 e3-20Xn 64_2l)

(s s33-23 fr3-2t) - 
(b gt3-23 b3-27Xn tS3-2t)

O 9;3-23 b3-27) - 
(s gt3-23 e3-2rl )(s r3-2a b3-26Xs b3-26 b3-27)

(s 13-24 b3-25) - 0p r3-2{ g33-25)(o b3-26)
(td13-30 c3-32) - 

(s13-30 c3-32)
(s13-30 e3-32) - 

(rdl-3tXlp d3-3I aj-32)

DTAGON^L LINES:
brss I descent 4

T/e *'ill Dow give below a script for tbe step-by-step operation of tbe cborale parser on the descant
line of a sbort cborale, no. 57. Note tbat mecbaDical analysis is a laboriou aDd inhereDtly complex
procedure, and tbe reader not iDterested in its details is urged to move oD to section 3.9. Wbile
parsing a descaDt line, the cborale parser can be in one of t$'o possible states, tbe linear progression
state (abbreviated 6 lp), aDd tbe uncommitted state (abbreviated as u). Tbe lp state means tbat a
linear progressioD wbose direction is known is in progress (i.e. enougb notes of a li-oear progression
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bave been seen to determine its direction), and tbe u state indicates that a tinear progression u'bose
direction is as yet gnkn6s'p is in progress (i.e. only tbe first Dote or repetitions of tbe first note bave
bcen seeo). Tbe paner is essentially a transition table tbat indicates tbe possible parser actioos and
output symbols wben a given note is encouDtered in a given state, augmenud by a set of constraints
tbat specify whicb transitions are legal. Tbe parser is capable of seeing a number of notes beyond tbe
Dote cureDtly being scanned, and bas access to all tbe retevant musical properties of the input stream
of notes, such as barmonization, or rbytbmic eont€xt. Tbe parser maintains a slack, and makes al-
t€rations 6p rhi< stack during eacb step. Eacb entry 6s thiq stack is of the form [state (i.e. type of
progression), beginning note of the progression, last note seen in tbe progression], bowever, tbe be-
ginning Dote is not used witb a u state. The state oD the top entry of the current stack is tbe same as
tbe current state of the parser, and the progression described in tbe top entry of tbe current stack is
called tbe ongoing progression. At eacb step, in case tbe current Dote conti.Dues tbe ongoing
progression indicated oD tbe stacktop entry, by repeatiDg tbe last note of tbe progression, or moving
a step au'ay from it,o tbe parser may simply alrcr tbe top entry of tbe stack, by updating tbe "last nore
seen in tbe progressioD", and perhaps cbanging tbe u state to an lp stat€. AD ongoing lp described in
tbe stacktop eotry can normally be continued by repeating iS last note, or by moving a step away
from its last note in tbe cxpected direction, but an ongoing lp is also allowed to change is direction
ooce, and after sucb a change of direction takes place, tbe cunent state is qualilied as a "tilted lp"
and tbe note wbere tbe chaoge of direction directioo took place is remembered on tbe stacktop €ntry.
Iu case tbe current noe jumps away from tbe lasr norc of $e ongoing progression on tbe stackrop
eDtry, a new u progression may be pusbed on tbe stack. In case Lbe current Dote moves a step away
from the last note of tbe ongoing progression on tbe stacktop entry (typically wben rbe ongoing
progression is u, or wben tbe ongoing progression is lp and tbe current not€ moves by step in tbe
opposite direction) a Dew lp beginning witb tbe last note of the ongoing progression may be pusbed
on tbe stack. In case the current note is a possible continuation of tbe progression described in tbe
top-l entry of tbe stack, i.e. if tbe cureDt note is tbe same its or a step away from tbe last Dote of tbe
progression on tbe top-l entry, tbe stack may be popped (and tbe top-l progression resumed). In
geoeral, u'ben tbe action oo the stack is a pop operation, tbe iopur pointer, tbat points to tbe Dote
currently being scanned, is not incremenred, so tbat during tbe next step the parser sees tbe same DoLe
witb tbe popped stack. For otber stack operations, this pointer is incremented by one. Tbe lotuitive
meaning of pushiog sontething on the stack is intemrpting an ongoing linear progression, and the
intuitive meaning of popping tbe stack is resuming a previonsly intemrpted linear progression. For
an analysis to be legal, dl intemtpted progressions must eventuaUy be resumed. Note that the parser
is oondetcrministic, i.e. tbere may be more tbao one possible actioD to perform in a given situation.
For example, wben tbe cunent note jumps away from the last oote of the progression on the stacktop
eory, and is also equal to tbe last note of tbe progressioo on rbe top-l entry, tbe parser can eitber
pusb or pop it.s stack. Eacb group of paragrapbs below describes a step of tbe paner, which in this
script, parses tbe descant line of cborale no. 57 witbout baclitracking. On the left margin of tbe first
paragraph of eacb group, tbe input Dote seen at the beginning of tbe step is indicated in rhe form
(notel-4sgquence number>, and witbin the first paragraph of tbe group, tbe possible actions that
can be performed by tbe parser at Lhat step are described, witb tbe most desirable action listed fint.
At eacb step, only tbe most desirable action is performed, but as usual tbe curent condirion of tbe
program is remembered in order to restart by performing the oext action if necessary, io case the
analysis gets stuck later and backtracking (rccurs. The desirabilicy of an action is computed, as usual,
as tbe sum of the weigbs of tbe beuristics rbat tbe action makes true. A parser actioD is described
as a list consisting of a stack operation (one of push, pop, or bold), the new state to be entered at tbe
step, tbe graurmar symbols to be outputed at tbat step, and tbe new contents of tbe stack; follou'ed
by tbe list of beuristics tbat tbe action makes true. After tbe list of possible actions ar a step, tbe
panial slur-and-notebead diagram tbat corresponds to tbe symbols outputed-so far is given (assuming
tbe most desirable action bas been perfornred). Tbe letter and number under eacb note of tbe slur-
and-notebead diagram indicates tbe last state and last stack deptb, respectively, of tbe parser wben
tbat note was being scanned; and uoderneatb tbese is a dotred scale tbat irodicates tbe sequence
aumbers of tbe notes witbin tbe input. Finally, any previously uoexplained beuristics are explained

Notc rhat rrgistcr tnnsfcr and missing notes in lincar progrcssions havc not yet been implemented.
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in tbe remainiog paragrapbs of tbe group. Appendix B conrain< tbe full detaib of the compurer im-
plementation wbich produced this aualysis.

Tbe contents of the stack is initially [u,last:a4-.] - [u,lasr:e5-0] (the topmosr
entry of tbe stack will always be tisred righmosr, and rbe notes oo tbe stack will
be sbou'n in rbe foroat <nor€>-<sequence number)). Tbat is, tbe imaginary
first note e5-0 bas just beeo scanned, and now tbe input pointer poins to the real
first note a4-1. Tbe bortommost stack entry [u,last:a4-.] is a dummy enrry tbar
signals that a linear descent to tbe tonic a4 (a fundamental fiftb progression tine)
is being expected (the borrommost enrry is special: a jump to tbe tonic a4, or any
note other tbao a4, will not satisfy the expectatious of this stack entry).

possible actions (most desirable lisad first)

l- operation: prsb, (Dew) state: u, ourput: (n a4-1), (new) stack: [u,tast:a4-.]
- [u,last:e5-0] - [u,last:a4-1], beuristics: none.

input

z4-1

c5-2

A

d

2
u

l- operation: ptsh, statc: u, output: (n
- [u,lasr:a4-l] - [u,last:c5-2], beuristics:

c5-2), stack: [u,fast:a4-'J - [u,last:e5{]
(ignore -marginal-escape -f rom-lp).

2J

: :

(ignore -marginal -escape -from-lp) :

Definition: three notes form an almost linear pattem iff tbey match one of tbe
pattems e e f ,  e I  I ,ef  g,  e e d,  e d d,  e d c.

If tbe previous stacktop state is lp, and ((tbe nore following tbe current one is
eitber a repetition of the current Dote or a stepu'ise continuation of tbe current
linear progression in the expected direction), or tbe notes (previous stacktop
Dote, current Dote+ l, current note+2) form an ahnost liDear pattern), and if the
curreot oote consti(utes a jump witb respect to tbe previous stacktop Dote, tben
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b4-3

it is undesirable to cancel tbe current erpectatioDs by reducing (popping the
stack) during tbe curreDt stcp. (Tbb beuristic is not ueful bere because tbere is
only one possible action.)

l- operation: pop, output : (n M-3)(s c5-2 U+-3Xlp c5-2 M-3), stack:
[u,last:a4-'] - [u,lasr:e5{] - [u,lasua4-l], beuristics: (coraer-crpectation-not-
missed), (default-nopusb). 2- operation: push, state: lp, output: (n b4-3)(s c5-2
b4-3), stack: [u,last:a4-'] - [u,last:e5-0J - [u,last:a4-l] - [u,last:c5-2] -
[lp,beg:c5-2,last:M-3], beuristics: (do-si-do-re-pusb). 3- operation: bold, state:
lp, output: (n b4-3)(s c5-2 b4-3), stack: [u,last:a4-'] - [u,last:e5-0] -
[u,last:a4-l] - [lp,beg:c5-2,last:M-3], beuristics: (default-nopusb).

(comer-expectation-oot-missed ) :

Definition: three pitches x,y,z form a corner ilf x>y and y<2, or x<y and y2z.

Definition: two Dotes y,z form a continuation of a linear or uncommitted
progression on tbe stacktop-l entry, whose last note is x, iff: tbe progression is
an ascending linear progression and x y z match one of e f g, e e f, e f f; or tbe
progression is a descending linear progression and x y z matcb one of e d c, e e
d, e d d; or tbe progression is uncommitted and x y z matcb one of e f g, e e f, e
f f ,edc,eed,edd.

If tbe current notc satisfies a pending expectation, and tbe stacktop noLe, current
note and curent Dote+l form a comer pattern, and (tbe current note, curreDt
Dote+l form a continuation of tbe progression on stacktop-l, or if tbe last
stacktop-l Dote, curreDt note, current Dote+l form an upper neigbbornore pat-
tcrD), then it is desirable ro pop tbe stack (in order to continue tbe pending linear
progression).

(do-si-do-re-pusb):

U tbe current note moves a downward step away from tbe previors stacktop
Dote, and (tbe previous state is uncommitted, or the previons stat€ is aD un-tilted
lp, aod tbe current note moves in tbe opposite direction 6f rhic lp), aod tbe cur-
rent note, current oote+1, and cr[rent note+2 forn and ascending scalar mo-
tion, then it is desirable to push tbe stack. (Comment: This beuristic is intended
to counteract tbe change-to-lp-totnrd-goal beuristic in places lilie tbe b4 in tbe
pattem c5 M c5 d5, wbere b4 poi-os toward the expectatioru of tbe progression
shning at c5 (as in no. 139).)

(default-nopusb):
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b4-3

c54

It is desirable not to pusb (in the absence of any otber recommendation). This
b a very low priority beuristic, and senves to avoid getting trapped in higb stack
hvels.

l- operation; bold, state: lp, output: (s a4-1 b4-3), stack: [u,last:a4-'] - [u,eS{]
- [lp,beg:a4-l,tast:M-3], beuristics: (cbange-to-lp-toward-goal), (default-

nopusb). 2- operation: push, state: lp, output: (s a4-l b4-3), suck: [u,last:a4-']

- [u,e5{] - [u,a4-lJ - 0p,beg:a4-l,last:b4-3], beuristics: nooe.

(cbange -to-lp-toward -goal ) :

ln tbe descaDt, if tbe culreDt note moves by step witb respecr to tbe last stacktop
note, and (tbe previous state is an lp implies tbat it is not a tilted lp and the cur-
rent note is staning a ne\\' lp in tbe opposite direction), and all immediare ex-
pecutions of tbe stacktop-1 progression are in the directioo tbat the cunent note
poinls to, and tbe current note is Dot i6elf an immediate expectation of the
stacktop-l progression, tben it is desirable to bold tbe stack.

l- operation: bold, stat€: tp, outpuc (n c5-4)(s M-3 c5-4), stack: [u,lasca4-'] -
[u"e S+] - [lp,be g: a4- l,last: c5 -4], beurisrics: (def ault-nopusb ).

t- operation: botd, state: lp, output: (n d5-5)(s c5-4 d5-5), stack: [u,last:a4-'] -
[u,e5{) - [lp,beg:a4-1,last:d5-5], beuristics: (delayed-slur-between-equal-
pitcbes), (doot-pop-witbin-scalar-pattem), (default-nopusb ). 2- operation: pop'
output: (n d5-5)(s c5-a d5-5)(lp a4-l d5-5), stack: [u,last:a4-'] - [u,e5-0]'
beuristics: (default-nopusb).

2322
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(delayed-slur-between-equal-pitcbes) :

U tbe current Dote is an irirmediate expectation, and (tbe current note+l is an
immediate expectarion, and is equat in pircb to tbe lasr Dote of the pending
progression on stacktop-l, and if tbe stacktop Dot€, current note, aod current
note+ I form a scalar motion, or tbe current note+2 is an immediate expectation,
and is equal in pircb to the last note of tbe pending progression on sracktop-l,
and if the stacktop note, current Dot€, and current note+2 form a scalar motion,
ud (tbe current nore+ I ei&er repeats tbe curreDt note, or jumps away from tbe
current oote and reaches current uote+2 again witb a jump), tben it is desirable
to keep tbe stack tevel the same during tbe curreot step (in order to reduce per-
haps wben tbe fortbcoming nore whicb is equal in pitch ro tbe last stacktop-l
noe is seen).

(dont-pop-within-sm;ar-pattern) :

If (tbe previous stacktop note, curreDt nore, curent Dote+l fornr a scalar pat-
l€m, or tbe previots stacktop note, current note, current note+2 form a scalar
patteru and current note+l is a repetition of tbe current note), aDd tbe current
Dote is an immediate ex,pecration, it is desirable to hold the stack at the cunent
st€p.

l- operation: Flop, ourput: (n e5-6)(s d5-5 e5-6)(lp a4-l e5-6), stack:
[u,last:a4-'J - [u,e5-0], heuristics: (slur-bet$'een+qual-pircbes), (defaulr-
nopusb). 2- operarion: hold, srare: lp, ourput: (n e5-6)(s d5-5 e5-6), stack:
[u,last:a4-'] - [u,e5{] - [lp,beg: a4- l,last: e5-6], beuristics: (default-nopush).

(slur-betwee n-equal-pitches) :

It is desirable to pop il there is a cbance to con-necr equat or chromatically retared
pitcbes, i.e. wben the current Dote is equal in pitcb to tbe last note of rbe previous
stacktop- I progression.

232221
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e5-6 l- operation: bold, state: u, outpur: (s e5{ e5-6), stack:
[u,last: e5-6], be uristics: (def aulr-nopusb).

Iu, last:a4-' ]  -

e5-7 l- operation: bold, state: u, output: (n e5-7)(s e5-6 e5-7), stack: [u,last:a4-'] -
[u.last: e 5-7], heuristics : (def ault-noprsh ).

d5-8 l- operation: prsh, sl.at€: lp, output: (n d5-8)(s e5-? d5-8), stack: [u,last:a4-')
- [u,last:e5-7] - [lp,beg:e5-7,lastd5-8], beuristics: (Urlinie-beuristic). 2- opera-
tion: bold, state: lp, output: (n d5-8)(s e5-7 d5-8), stack: [u,last:a4-'] -
[lp,beg:e5-7,lascd5-t], beuristics: (cbange-to-lp-toward-goal), (default-
nopuh).

(Urlinie-beuristic):

In tbe soprano, if tbe previous stack level is I (not counting tbe bottomntost
entry), and the previous stacktop state is uncommitted, and tbe cturent Dote
stans a descending linear progression by moving a st€p dorrnward from the
previous stacktop pitch, tben it is desirable to push a linear progression that starts
witb tbe previous stacktop pitch, except wben (tbe cunent phrase is tbe final
phrase, or wben tbe current pbrase is tbe penultimate phrase and tbe structural
progression of tbe descant is rbe descending octave progression) and tbe re-
paining notes of tbe input make a simple scalar descent to the tonic (possibly
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c5-9

including repeated notes). ln these exceptional cases it is desirable ro keep the
stack level intact and alter the stacktop by cbangiog tbe state into a linear
progressioa.

l- operation: hold, state: lp, outpuc (n c5-9)(s d5-8 c5-9), stack: [u,lasra4-.] -
[u,last: e5-7] - [lp,beg: e5-7,last: c5-9], be uristics: (def ault-nopush).

b4-10 l- operation: bold, state: lp, output: (n ba-10)(s c5-9 ba-10), stack: [u,last:a4-.]
- [u,laste5-7] - [lp,beg:e5-7,last:b4-10], beuristics: (default-nopusb).

b4-1 I l- operation: bold, state:
[u,last:a4-'] - [u,lasr:e5-7]
nopush).

lp,  outpur:  (n b4-l t )(s M-10 b4-11),  suck:
- [lp,beg:e5-7,last:M-ll], beuristics: (default-

e5-12 1- operation: pop, output: (lp e5-7 ba-11)(o e5-12), suck: [u,lasr:a4-.] -
Iu,last:e5-7], beuristics: (comer-expectation-not-missed), (slur-between-equal-
pitcbes), (default-nopush). 2- operatioo: pusb, state: u, output: (n e5-12),
stack: [u, last:a4- ' ]  -  [u, last:e5-?] -  [ lp,beg:e5-7, last:b4- l l ]  -  [u, last:e5-12],
beuristics: none.
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e5-12 I' operation: bold, state: u, ourput: (s e5-7 e5-12), stack: [u,last:a4-.] -
[u,last: e 5- I 2], beuristics: (def ault-nopush).

d5-13 l- operation: pusb, state: lp, output: (n d5-13)(s e5-12 d5-13), srack:
[u,lasca4-'] - [u,last:e5-12] - [lp,beg:e5-l2,lasr:d5-13], beuristics: (Urlinie-
beurist ic).  2- operat ion: bold, srate: lp,  ourput:  (n d5-13)(s e5-12 d5-13),  srack:
[u,last:a4-'] - [lp,beg:e5-l2,last:d5-13], beuristics: (cbange-ro-tp-roward-goal),
(default-nopush).

d5-14 l- operation: hold, stare: lp, ourpur: (n d5-la)(s d5-13 d5-14), stack:
[u,last:a4-'] - [u,last:e5-12] - [tp,beg:e5-12,last:d5-14], beuristics: (doot-pop-
at-equal-pitcb), (default-oopusb). 2- operation: pop, output; (n d5-14)(s d5-13
d5-la)(lp e5-12 d5-14) stack: [u,last:a4-'] - [u,last:eS-12], beuristics: (default-
nopush).

(dont-pop-at -equal-pitch) :

If the current note is equal to tbe stacktop note, and tbe cunent Dote is an im-
mediate expectatioD, and not(the previous stacktop note and tbe current nore are
adjacent on tbe surface and form an anticipation pattern where tbe previolrs
stacktop note is an eigbtb note oD a weak eightb beat), tben it is undesirable to
pop at tbe current step. (Comment: a decision was made not to pop the stack
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for some reasoD wben the previous stackbp note was seen, this heuristic defers
to tbat decisioo on tbe repetition of tbe stacktop note.)
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c5-1 5

b4-16

1- operarion: bold, state:
[u,last:a4-'] - [u,laste5-12]
oopusb).

lp,  output:  (n c5-15)(s d5-14 c5-15),  stack:
- [lp,beg:e5-l2,last:c5-15], heuristics: (default-

l- operation: bold, state:
lulast:a4-'] - [u,last:e5-12]
nopusb).

lp,  output:  (n ba-16)(s c5-15 b4-16),  stack:
- [lp,beg:e5-l2,last:b4-16], beuristics: (default-
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c5-77 l- operation: bold: state: tilted lp, output: (lp e5-12 b4-16)(D c5-17)(s b'1-16
c5-l?),  stack: [u, last:a4- ' ]  -  [u, last:e5-12]
[lp-tilted,beg:e5- l2,peak: b4-l6,last: c5-17], beuristics: (cbange-to-lp-tou'ard-
goal), (default-noprcb). 2- operation: push, state: lP, output: (n c5-17)(s b4-16
c5-17), stack: [u,last:a4-'] - [u,lasr:e5-12] - [lp,beg:e5-12,tast:b4-16]
[lp,beg:b4-l6,tast:c5-17], beuristics: none.
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l -  operat ion: pop, output:  (n d5-18)(s c5- l? aS-18)( ip b4-16 d5-18),  stack:
[u,last:a4-'] - [u,last:e5-12], beuristics: (corner-expectation-oot-missed), (pop-
at-jumping-lp), (default-nopusb). 2- operation: bold, state: rilted lp, output: (n
d5-18)(s c5-17 d5-18),  stack: [u, last:a4- ' ]  -  [u, last:e5-12]
[lp-tilted,beg:e5-l2,peak:M-l6,last:d5-18], beurisdcs: (default-nopusb).

(pop-at-jumping-lp):

If tbe previous state is lp, and tbe current note eitber repeats tbe previous
stacktop Dote or continues tbe lp by step, and tbe curreDt oote is an expectarion,
and (tbe current Dot€+l constitutes a jump witb respect to the current note. or
tbe current not€+1 starts a new lp in Oe opposite direction), tben it is desirable
to pop at tbe current step.
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l- operation: botd, output: (s e5-12 d5-18), stack: [u,last:a4-']
[p,beg:e5-l2,last:d5-18], beuristics: (Urlinie-beuristic), (cbange-to-lp-to$'ard-
goal), (default-nopush). 2- operation: pusb, state: lp, output: (s e5-12 d5-18),
stack: [u,last:a4-'] - [u,last:e5-12] - [lp,beg;e5-l2,last:d5-18], beuristics: DoDe.

l- operation: hold, state: lp, output: (n c5-19)(s d5-18 c5-19),
[u,last:a4-'] - [lp,beg:e5-l2,last:c5-19], beuristics: (default-nopusb).
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b4-20

b4-21

1- operatioo: bold, state: lp, output: (o M-20)(s c5'19 b4-20), stack:

Iu,last:a4-'] - [lp,beg:e5-l2,last:b4-20], beurisrics: (default-nopush).

l- operation: bold, state: lp, output: (n ba-21)(s b4-20 b4-21), stack:

[u,lasr: a4-'] - [lp;beg: e5- 1 2,lasu b4-2 I ], heuristics: (default-nopusb)'

2322211222212222
uu l l luu l l l lu l l l l
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a4-22 l- operation: pop, output: (n a4-22)(s b4-21 a4-22)(lp e5-12 a4-22), stack:
[u,tast: a4-' ], be uristics: (pop-at-phrase-ending), (def ault-nopusb ).

(pop-at-phrase-ending): It is desirable to pop the stack u'ben the current note is
a pbrase ending.

Input exbausl.ed, stack deptb O (not counting the bottommost entry), successful
parse.

After this demonstration of tbe operation of the parser, it is appropriate to Dote the limitations of tbe
present starc of our tbeory. Altbougb the present heuristics do produce plausible parsings oD many
cborale melodies, tbey do not always lead ro tbe correct solution. For example, tbe Urlinie beurisric
whicb assumes tbat a chorale will linger on tbe higbest stnrctural Dote until tbe ending phrase, u'bile

true for many cborales, fails for a cborale such as "Ach wie flucbtig, acb wie nicbtig" wbere tbe I

and 3 of the main fiftb progression arrive gracefully on the gnrtings of the third and founh phrases.
One possible remedy is to find absolure rules tbat would reject sucb \ Tong analyses suggested by the
beuristics, and cause backtracking until ao acceptable analysis is found. Unfortunately, unlike the
cborale bannonization task, the area of hierarchical voice leading analysis is very new; and \A'e are

l t l
t t l
.  20.
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uDable to produce tbe required targe number of absolure rules about partial parse trees, because suf-
ficient knowledge is simply not yet available in this area. Furtber basic researcb in music is oecessary.
Some possible directions for finding such nrles are d.iscussed in tbe comtnents of tbe Scbenker
tnowledge base in Appcndix B.

3.9 Comparison of our voice leading rheory with ahe theory of LerdaN and Jackendoff

In tbe follon'ing sections we will compare aDd contrasr our hierarcbicaf tbeory of voicc leading u,ith
tbe works of Scbenlier and of brdaN and Jackesdoff.

In l-erdahl and Jackendoffs tbeory for hierarchical parsing of music lL-erdahl and Jackendoff g3], a
piece is represented as a seguenc€ of homopbonic musical ivents, e.g. cbords. For a simple piece, lhe
cvents would consist of rbe longest venical slices of tbe piece whicb begin s'itb at leasr oDe voic€
striliing a note, and wbere a Dote may be struck only at it. u.ginning of tbe slice. In mosr cases
bowever, certajn inessentjal notes,/cbords are removed fronn sucb rau,events before parsilg can be-
gin. tn addition to a formal description of u'bat constitures a legal parsing of a piece io tbeir theory,
I-erdabl and Jackendoff describe a set of informal beuristics roi aesiraulJ parsings; and an inforural
absolute nrle (tbe interaction principle). Atthougb I-erdabl and Jackendoff io not-employ a reu,riting
ruIesystem directly, tbe reuriting rules undertying tbeir tbeory are elegantly sinpte: in essence, tbey
can be written in a few lines as

s+l  l r  I  E
1.1 sS
ftss

Wbere s is the sun symbol, and E is a symbol tbat immediately produces a surface event (e.g. cbord).
For parsing a sequence of even6, I-erdahJ and Jaclendoff emitoy a compressed version of a parse
Lree for thi( grammar: wbenever an I appears, ir is merged along r*itb its parent s into a ..left
brancbing" node, wbenever an r appears, it is merged atong witb irs pareDt s to aD ..rigbt brancbing,,
Dode, and E's along witb tbeir pareD6 are removed, as exemplified in tbe figure below.-Tb. p"rr. ,..
is sbown oD $e lefi" and $e l-erdahl-Jackendoff rree on tbi rlglr-
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Tbe compressed panc trees of l-erdahl and Jackendoff also utilize some funbcr gradations of left or
right branching, called weak-strong left or rigbt brancbing. Moreover, more tban one eveDt czrn
sometimes be treated as a single evenL in tbe context of cadences. Tbese features of Lerdahl and
Jackendoffs tbeory can also be formalized within a rewriting rule system. Tbe compressed tree no-
tation is a merely a convenient way for sbou"ing tbe result to bumars.

I-erdabl aod Jackendoff's tbeory undoubtedly constitutes an important pioneering effon toward the
formal hierarchical parsing of muic. An early article by tbem ([t erdahl and Jackendoff 77]), bad
i-o fact inlluenced u profoundly (perbaps because tbeir uees were a lot easier to understand tban
Scbenlier graphs). However, at tbe current stage of our research, we bave ended up with a radically
different hierarchical analysis tbeory. ln tbe following paragraphs, we will discuss wbat we now see
as weak poinls of tbe l-erdahl and Jackendoff parsing Oeory, and compare and contrast our tbeory
witb tbeirs

A minor objection about tbe Nerarcbical voice leading tbeory of l-erdahl and Jackendoff is tbat tbeir
verbal parsing procedure is occasionally unalgorithmic. Tbat a simple non-deterministic bottom-up
or top-donn pa$er for tbeir gramnar can be fouod is immediately clear, but bow the parsing
beuristics are going to be incorporated in tbe steps of rbe parser, and wbetber tbeir terse heuristics
u'ill be sufficient, or wbetber tbey will need more absolute rules, is unclear. We feet tbat tbe com-
puter implemeDtatioo of an analysis tbeory is an instnrctive and useful endeavor, and we feel that tbe
most immediare tbeoretical contribution of such a comput€r implementation, is to clarify wbat addi-
tional knowledge, if any, may be required to make a tbeory perform satisfactorily. ln tbe ligbt of tbe
beritage of imprecise traditiooal treatises, l-erdabl aod Jackeodoffs general effort toward making
tbeir ideas precise should cenainly be appreciated, however, one sbould be cautions about tbeir
beuristics, vr'hicb have not been formulated and tested witb algoritbmic precision.

Altbougb tbe parsing preferences of Lerdabl and Jackendoff are based on natural musical coulmon
sense, involving tbe relative harmonic, rhythrnic, and melodic importance of events, there are some
problems associated witb tbeir theory tbat occasionally tend to make tbeir analyses unoatural. Tbese
problens panially stcm from rhe fact tbat their analyses are based on a cbord-event hierarchy: Tbeir
trees are also equivaleot to a labeled binary tree, wbere eacb non-terminal node is labeled witb the
more important among tbe labels of is lefson and rigbson, and wbere each terminal node is labeled
witb an ordered pair, consisting of an event paired to its sequence number in tbe piece. Tbe parsing
of tbe I-tr-V-I progression sbonn above can be rewritten iD this notadon as follows:

9q)

Tbe first problem is tbat sucb a tree brings togetber, as the leftson aod righsoo of some oon-terminal
node, chord-€vents u'bicb are not adjacent in tbe music. Tbe analyst is faced witb tbe task of con-
structing tbe tree such that tbese oon-adjacent cbords that are anificially brought togetber in the tree
do form a reasonable progression u'itb respect to each otber. It is possible to get e.g., the descant
par6, or roots, of sucb non-adjacent cbords to be related, in fact tbese are parsing preferences; but
analysis is made anificially harder by the fact tbat Lerdahl and Jackendoff bave cbosen tbe

(fr4)

(r, r) (r, q)
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bomopbonic event as a rigid inseparable entity, therefore not only tbe melody or bass, but also the
inner voices of such non-adjacent events 6u51 eimulteneously form a legal progression (tbe analysis
would be inelegant if such pain of eveDts produced e.g. blatant paratlel fiftbs). For example, in their
rime-span parsing of cborale no. 165 (p. 144 in ll-erdahl and Jackendoff 83]), the event
(b2,b3,f#4,d5) (n. 8) comes close to baving a leftson-rigbtson relationship with (b3,b3,d#4,f#4) (m.
12), potentially producing the false relation d5 - d#4; but becaue of tbeir special ueatment of ca-
dences, an intermediate buffer cbord is considered to be merged with tbe rigbtson that prevents the
false relation. Anorber difficulty due to regarding tbe vertical event as irseparable preseDts itself
when the important notes of the bass and melody do not come underneath each otber, but we need
not elaborate on this point since l-erdabt and Jackendoff already recognize tbe need for separate trees
for tbe bass and descanL

The second problem stems from the region hierarcby witbout partial overlaps (well formedness) in-
berent in their theory, and the binary nature of tbeir uees. A l-erdabl-Jackendoff tree makes events
that are adjacent in the music look unrelated, both by connecting tbem to different parents, and by
assigning them to widely different levels on tbe tree (where we are rsing level in the sense of distance
from the root to fint occurrencc of iur eveot ou a patb, in the latter type of uee described above).
For example in tbe progfession I-tr-V-I given above, tbe level drop between adjacent cbords I and
II is unnatural and unjustified, although tbe level rise tr-V-I is reasonable. Moreover tr is as connected
to tbe initial I as it b to V, althougb the tree contradists this hearing, by connecting tr to a different
pareDt, tbus putting a region boundary between tbe initial I and tr. Music, even bomophonic music,
often containq pervasive amounts of connectedness, that defies placing hierarchical region boundaries
between adjacent events. Also, bearing paradoxes sucb as tbe non-existent two-level drop (increase
of tersion) noted here prevent us from coDstructing harmonic tbeories tbat make unbridled rse of
binary cbord+vent hierarcby.

Tbe main error here is in the concept of reducing a group of evenB to a single event (the strong re-
duction hypothesis). This reductioo is intuitively conect only if tbe sequence of events begins and
ends with tbe same evenl Reduction of sequences of cbords that are not bracketed by tbe same
chord can be done only in very traditionaltextbook cases,like replacing acadential It- V lbV V I
similarly, non-chord events that are not bracketed properly can be reduced to a single event only in
"diminutions" of the simplest kinds. Otberwise this practice leads to unnatural panings. In the
I-tr-V-I example above, it is unnatural to reduce II-V to V, or II-V-I to I, but it is natural to reduce
I-tr-V-I to L (It would also be natural to reduce I-n-V to I-V, but in the l-erdahl and Jackendoff
theory, a pair of cbords J-V cannot be a parent). It is possible to see tbe reduction of II-V-I to I as
a small substep of the complete step, which is tbe reduction of I-tr-V-I to I, but it would be aestbet-
ically desirable that eacb subtree of al analysis tree should form a logical eDtity by itseU. It is ioter-
esting to note tbat Scbenker himself often follows this intuitive reduction rule in Der fieb.Saa (i.e.
reducing a sequence to a siogle cbord only if the sequence is bracketed by tbat chord). There does
Dot seem to be a universal agreement about tbis reduction rule however, for exanple, Borte and
Gilbert 821 feel content about writing:

Jesu neine Frcude, Bacb cborale (p. 143)

1.-g-
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On tbe otber baod, Scbenlier prefers to put pareotbeses around sequences that belong to a later level,
sucb tbat s'ben tbe parenthesised sequence is deleted, tbe remaining chords form a structural pattern
such as I-IV-V-L He does not reduce tbe parenrhesized sequence to ao earlier level chord sucb as I
or V. Ooly wben a cbord sequence is properly bracketed by equal cbords does Schenker tend to re-
duce tbe sequencc to tbe bracketing cbord (with a notable exceptioo involving tbe dividing dominaDt,
wbere a scquence bracketed by tbe tonic and the divider are reduced to the tonic, cf. Cbopin, Etude
op. 10, no. l, Der freie Sau oo. 130/4b. mm 1747).

erample of correct reduction to a single cbord:
Derfieie Sae,ao. 62/2

Bccthovcq l:orctYOrcrtrue No. 3, Ad.gio (cf. Fig; 120,1)
a. tl t , tost t t l D2tt ' .?I t r
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example of parentbesizing out lower tevet cbords:
Der freE Soa,,no.76/6

Cfcodn$ Hluda ct Ercrcicq Pr6l. I

A fiDal problem with tbe l-erdail and Jackeodoff prolongational reductioo tree is tbar it bas little
provision for deep linear progressions, rlre discovery of Scbenker, and rhe essenc€ of his theory.
Their parsing is mainly guided by barnronic considerations. Tbeir beuristic about assigning a rigbt
h3sshing structure (tension increase) for an ascending progression and left branching srrucrure
(tension decrease) for a descending progression is probably naive; a descending motion can increase
tcnsion u'ben it takes tbe music astray from tbe expected continuation of an ongoing progression. an
ascenrling motion can cause relaxation il tbe higber note is a continuation of a progression tbat was
previottsly intemtpted. For example in tbe very commoD ending pattern (s d5 c5) * (lp d5 ba)(n c5)
(see previously given figure) tbe descending linear progression from d5 to M increases tension, and

r( ) tsa
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tension is relaxed wben b4 ascends to tbe final c5. An analog of our parsing of this ending pattem is
at any rate uDlikely in the tbeory of L^erdahl and Jackendoff, since, assuming the d5 event is accom-
panied by tr ! and M eveot is accompanied by V, tbe b4 eveot would probably be tbe bead of
(d5,c5,b4). ln case the reader does not agree witb the austere bearing of Schenker for tbe case of this
ending pattem, here is a more intuitive example of an asccnding motion fvs5 innsl voice that de-
creases tension, since it leads to rbe expectations of the deep neighbor Dote f5:

Our tbeory of voice leading hierarchy avoids some of tbe problems noted above, as follows: Descant
and bass parse trees iue separated, tbus elininating tbe anificid difficulties of parsing tbe bass and
descant togetber. (I-erdabl-Jackendoff also refer to a possible extension of tbeir tbeory in this di-
recdon). Maximal elision is built into our grarDmar (via touching slurs tbat sbare endpoins): this
leghnique often avoids baving to disconnect adjacent events tbat are connect€d in tbe music. Hi-
erarchjcal structure is not lost because of the elision. lnformaUy, tbe trick is to bave tbe anal]tic slur
connecting two Doteheads as tbe tree node, not the Dot€bead. Tbe noteheads are generated only at
tbe terminal uodes of tbe uee, witb eacb slur generating the notebead on is rigbt end, so tbat
noteheads are Do! generated twice.so However, tbe preseDt form of our treatment of tonic-
domin3sl-1onic patterns can cause tbe suMominant to be disconnected from tbe tonic or dominant
wben tbere is a melodic jump from or to tbe subdominant, so our theory is also not entirely free from
tbe disconnection problem. Our grammatical categories (s ry) and (lp xy), offer intuitively complete
reductions, because tbey are slurs tbat entLely cover the sturs tbat are reduced to tbem, unlike some
l-crdahl-Jackendoff reductions of groups of cbords to single chords, which can intuitively only be
cxplained as microsteps of a larger reduction step. Finally, because of our Scbenkerian beot, our
grammar bas built-in deep linear progressions, such that in order [o reducc any descant line, you rn usr
find a deep linear progression: the beuristics belp to cboose iunoDg tbe possible deep li.oear
progressions.

Afrcr choosing tie notchcad as the trce nodc, [SneU 79] ran into problems when trying to ma\c a hicrarchy our of a
passing tone pallern, c.g. c5-d5-c5, and concluded thar thc passing tone d5 must have tso parents (tlre notehcads it is
sands'ichcd bcls'ccn). and thrs had to abandon thc trec formalism for a "trcc-lilc" formalism. This problcm could havc
bcen solvcd *ithout lcaving thc trec formalism s'hen the hicrarchy is sccn as a slw bctsecn c5 and e5 as tJlc sinlCc parent
rrhosc sons are a slur bctwccn c5 and d5 and a slur bete'ccn d5 and c5. [krdaN and Jac\cndoff 83] also rccognized that
a ncighbor note pattcrn, e.g. e5-f5-e5, could havc been rcprescnted by a "nctworli notation" consisring of slurs bctwcen
fust e5 and last c5, first e5 and f5, f5 and last c5, but than remar\cd that such a notation would b,c difficulr ro formalizc
(thcy may have had ir nind a graph s'hosc vcrticcs are notehca&). and opted for their trec notation s'hich makes f5
cither thc son of the fint e5, or the son of rhe last c5. [Smoliar 80] rsed an unrcstricted sct of transformations for ob'
taining a list structure for rcprescnting a Schcnkcr Eaph, mainly bascd on "parcnthcsizing out" the notcs tlrat bclong
loalatcrlcvclbyenclosirgthemir (scq...) ,sotf iats'hcnthcparcnthescsandthcircontentsaredelctcd,onlythecarl ier
lcvcl notes remain (sirnilar to q'hat Scher*cr docs with chords). For examplc a neighbor notc f5 rirhin an c5-f5-c5
pattcrncouldbcparrnthesizedoutas(scq191;(scq(f  l ) ) (c l ) ) .  Howcver, th istcchniqucfai lcdtoraleaccountof  the
casc whcrc a notc bclongs to a latcr lcvcl and an carlicr levcl at oncc, sincc onc cannor pul a norc iruidc and outsidc
parenthcscs at thc samc time. For cramplc a production (s d5 d5) - 

(lp d5 M)(n d5) Ls rcprtsentcd in Smoliar as (scq
(scq (d l) (scq (c l)) (b 0)) (d l)) T'hcre lhe inJormation that thc fusl d5 is rt lcasr as imponant as $e sccond d5 has
bcen lost bccausc of thc double-cmbcdded localion of rlrc fint d5. On Oe othcr hand. unlke thc thcorics of Snell and
Smolar, our theory prcfers to ignorc thc harmonic inten'al-filling origins of iirear progessions and conccnlrates on the
voicc lcading aspccts. sincc c'e fccl tlrat adding intcrval hll.ing productions by itself eill not laad to mon inreresllrg
anallscs. or ro a brcallhrough in harmonic hierzrchy thcory.



Our study of Der freb Soa led u to believe that tbe deep linear progressiors are tbe most important
discovery of Schenker, and that wben a foreground note is pan of a deep linear progression, it is im-
portart, for a new and sophisticated reason, independent of its rbytbmic, barmonic or local melodic
importance.3l These latter down-to-cartb attributes belp to choose amoug tbe possible deep linear
progressiors to uack down. Tbe intrinsic importance of deep linear progressions is simply a newway
of bearing, which sbould be learned, appreciated, and added to tbe existing intuitioos of tbe educated
mrsiciao. We feel that it is irrelevant to attack Scbenker becarse bis panings do not follow the ex-
isting donn-to-€artb intuirions, ll-erdahl and Jackendoff 77, Narmour 777, or to defend Scbenker
because his parsings do follow existing down-to-eartb intuitions [Forte and Gilbert 82] (incidentally,
tbey often do).

Retuming to lrrdabl-Jackendoff trees, we sbould note tbat tbe l-erdabl-Jackendoff tbeory covers a
broader style of music tben ours, wbich, because of the exactitude required by a computer iople-
mentation, is limited to a specific style. For example, our tbeory bas not been tested on a Bacb Frencb
suire style incorporating multiple simultaneous rriddleground lines in one top voice, or on very large
scale works. lt is probably impossible to devise a tbeory for all tonal music (we do not know what "all
tonal muic" is), one can only get more and more convincing results by analyzing more works.
Schenker's theory covers a very broad range of works, and outperfonns any similar theory iD this
respecL To face tbe practical facts, a similarly broad endeavor with a formal tbeory of analysis of
tonal music, would require suitably funded team effon $at brings togetber the right expertise, or
dreroatively, about tbe amouDt of skilled man-bours Scbenker spent oD his tbeory.

3.10 Consideretions on formalirjng Der freie Sar

To this date, Scbenlerian analysis has been presented i:r tbe conventional informal way, by producing
many grapbs iD tbe style of Scbenker, and expecting tbe student to learn mainly by examples [Fone
and Gilbert 82]. fD this tcaching method, neitber tbe studeDt Dor tbe autbor of tbe book precisely
kno.r' wbat is being taugbt, bowever, tbe metbod nevenbeless works for sufficieotly good students.
On the otber band, formal approacbes to analysis have declared Scbenker as being inexplicit U-erdahl
and Jackendotf 77). Altbougb Scbenker does not provide a formal basis for tbe stnrcture of his
grapbs, it b possible to show, by example and not by algorithm, some direct relationships between
our formal voice leading hierarchy productions which are well undentood, and Scbenkerian grapbs
from Der freie Sotz, wbicb are as yet Dot fu[y formalized. We feel tbat a full and perbaps loyal
formalization of tbe Scbenker graph, and a rule based program for automatic Scbenlierian analysis
of limited styles, may eventually be possible, although it will be more desirable to make some simpli-
fications to obuin a more elegant tbeory. It is our hope tbat tbe following examples and discussion
will bring fonb some clearer open problenu in tbe formal analysis of tooal music in tbe style of
Schenker. Note that a formal approach to Schenkerian analysis is not relevant only to computer im-
plemeDtations: il a formalization tbat is powerful enougb to express most of Scbenker's ideas could
be found, witb precise rules describing wbat the legal, unacceptable and recommended reductious
rr€, teaching Scbenlierian analysis would become :rs easy as teacbing strict counterpoint.

The Scbenker grapb can be construed as multiple bierarchical voice leading trees for a given set of
pitcbes. The differeot notebead symbols used by Schenker are Decessary for conveying tbe informa-
tion as to whicb parsiogs are Eore important-

Consider, for example. thc locally unimporrant but srrucrurally significant degrcc 2 n Der fnb Sar 30/b. Schuben
Waltz op. 9 no. 2.
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Derfrcie Sau,oo.24:

Parsing no. 1:

Parsing no. 2 (of descant);

Tbe first parsing is indicated to be more inponaot by Schenker, because of the beamed hatf notes.
(However, Schenker sometfuies contradicts this interprelarion of inremrption by making the second
V in tbe bass, and second parsing of tbe descant more imponant).

One possibility for dealing witb multiple parsings is to formatly encode all panings in a kind of non-
deterministic parse tree, by using an additional or-brancbing level tbat by convintion has the nosr
important parsing oo tbe left-

Anotber type of double parsing occurr witb the elaboration of tbe same (s ... ...) structure of rhe bass
or descant u'itb different notes. In thjs case, tbe elaboration n'itb tbe lower pitches is often more im-
portaDt in tbe bass, and vice versa for the descant.

As disti-nct from tbe vsi6s lg2rling productions n'bicb are designed to parse a monody, tbe linear
progressioos or motions from inner voice tbat join one end of a bigber level slur in Schinker graphs
are oot necessarily within tbe span of tbat slur, Lbey may join ao inner voice underneath tbe opposite
end of tbe slur, and continue even funher.



Example: D* frcie Sau,no.76/5

Chopin, Mrzurlcr op' 17 no. I
A

-l i

l (
I  Ar-
l ("r  -

Tbe slurs rbat join equal pitcbes in Scbenker graphs are almost always reduced to a single pitcb. One
end of tbe slur is declared to be more important than tbe other end during this reduction. Tbis re-
duction wits not implemented in our grammar: our voice leading productions contain no information
as to whicb element of a deep repeating Dote sequence is tbe most important (except tbat a note on
tbe endpoint of a linear progression wbere it joins ao earlier-level slur, is more inrponant tban a Dot€
in some other place of tbat linear progression). A more complete Geory would oeed to be able to
reduce out a slur between equal pitch notebeads, merge the two noteheads into one, and also indicate
which end of tbe slur is important. Cenain Scbenl,erian reductions of non-linear nature tbat we bave
presendy omitted, sucb as uDfelding, or more general arpeggiations, would also bave to be accounted
for.

So we now bave a sketcb of a strategy tbat uses two separate, complete parse uees for the descant
and bass, allows multiple prioritized parsings in eacb tree, allo"\'s lp's banging froru one endpoint of
an (s x y) to extend beyond tbe other end to inner voices, and aupments tbe productions to allow
equal pitcb notebead merging and perbaps tbe less regular Scbenlierian reductions like unfolding.
Tbe two complete-tree coujecture need not always agree u'itb Der freie Sar, but is preferable to
cbaos. Tbis framework needs to be extended witb inner graphical structures that are not part of eitber
tree.

Tbe inner voices in Scbenker grapbs are Dot complete voice leading trees, their function is to supply
inner parts to skeletal cbords of the middleground and indicate some linear progressiors, ofren in
thirds or sixths witb tbe bass or descanl On tbe otber hand tbe descant and tbe bass usually have at
least ooe full voice leading ree parsing, spanning the entire piece. The inner parts are under no ob-
ligatioo to form a full voice leading tree. Tbey are often explainable through isolated (s ... ...) or (tp
... ...) structures - we can call tbem shadow slurs, or isolated (n...) stnrctures, wbjch Devertbeless
internally bave a well formed parsing. (lp ... ...)'s emanating from the endpoins of descant or bass
slurs may join tbe endpoins of sucb sbadow slurs. Tbe follou'ing exaruple demonstrates sone isolated
sbado',\' slurs and notes of tbe inner pans, that complement tbe complete voice leading trees of the

e'.r)b-
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bass and descanL Tbe noteheads due only to tbe inner parLs are parenthesized, and tbe slurs due to
tbs innsl parts are Earked by a ".

Der freie.SaE, Do. l0g/b

(=I  IV\.-

Finally, tbere sometimes are highly uohierarchical parsings of tbe same descant line (partial ove-
rlappings of slurs). ln tbe exarnple below, tbe slur connecting rbe first Lwo e4's and tbe implicit slur
betu'een tbe beamed balf notes g#4 and a4 overlap in an unbierarchical fasbion.s2

Der freie Satz, no. 153/3b, Cbopin, Etude op. l0 no. 3

It is difficult to adequately account for sucb unhierarcbical nesting of the slurs with a hierarchical
tbeory, even if multiple parsings are aUou'ed. Tbis appears to be a challenge for hierarcbical tbeories
of music.

b't

Schubert, Troul Quintet, op. I l{, lst rnvt.. mm. E{ fr.

?J

e [Narnrour 77] ls therefore unjr.r.st q'hen he accuses Schcnlcr sith hicrarchical rEduction.



Note that tbe possibilities described above caD at most take care of assigning a formal structure to tbe
oorcheads in a middlegiound grapb. Hou'ever, Scbenker did oot devise a tbeory tbat places a
Dotebead in a grapb for eacb notehead or eveDt in the muic. How one gets to the notebeads of tbe
Schenker grapb from tbe actual notes of tbe muic can be sometimes irregular, as tbe foUou'ing
diminution example will illusuate. Tbe grapb can be foraafized witb voice leading productions,
bowever exactly how tbe grapb is obtained from rhis passage appears o require furrher research.

Der fieb Satz, no. 123/5

J.S. Bach, French Suitc in E Mrjor, Allemende, mm.5-8

It is also Decessary to comment on tbe ptace of barmonic reductions and barmonic hierarchy in
Scbenker's rbeory. Tbe barmonic reduction theory of Schenker is not as ricb as his voice leading re-
ductions, despite verbal comments of his own and of his followers lsalzer 62], tbat confuse tbjs issue.
Sequences of chords that are bracketed by the same chord can be reduced to that cbord. Tbere are
Do otber reductions to a single cbord except in some simple textbook progressions, and in some ex-
ceptional cases sucb as tbose involving a dividing dominant. The otber type of reductjon is done by
eoclosing a sequeDce of cbords in parentbeses, declaring lhem to belong to a later structural level.
Altbougb a hierarcby of I-tr-V-I or I-IV-V-I pattems can sometimes be observed in Scbenlier graphs,
for later level analyses Scbenter often uses conventional cbord figures that merely correspond ro
wbat is in tbe voice leading grapb. Schenker also 2nnotates some recurring parterns sucb as 10-10,
which appear to have little hierarchical bearing. Perbaps the disintegration of barmonic bierarcby in
the foreground is intrinsic; we do not at present know il there is a convincing natural hierarcby of
cbords that bave Dore structure tban is given i-o tbe Scbenker grapbs (we gave our objections to tbe
l-erdahl-Jackendoff baroonic bierarcby above). Tbe reader is of course free to disagree witb our
observation about tbe harmonic aspect of Scbenkerian analysis, bowever, a formal bterarchical theory
of barmony along tbe lines of Scbenker (i.e. witb restrictiors on reductions to single cbords), tbat is
also able to provide an interesting suucture for surfacr chords, is to our preseDt knowledge an as yet
unachieved research goal.

3.t t Conclusions from the music standpoint

We will oow summarize tle musical issues tbat were addressed by our research.

In this report, we bave described an algoritbm for generating traditionat music on a computer, \r'hich
appears to work, and succeeds in producing ooo-trivial music tbat is of some competence by educated
buman musician standards. It is appropriate at this point to Dote thar tbere have already been a
number of early atEmpts at generatiDg traditional music witb a computer, e.g. [Barbaud 66, Rader
75, Moorer 72, Zzrripv 69, Smoliar ?t, Hiller 59, Sundberg and Liodblom 76, Rotbgeb 681. Orber
researchers [Baroni and Jacoboni 76, Segre 8l] have approacbed tbe Bacb cborale generation prob-
lem itself. Anificial IntelLigence approacbes to tonal music bave also beeo previously proposed by
[Meeban 8O], and [Balaban 84]. Tbe advances in Artificial Intelligeoce as well as computer bardu'are
ir tbe last decade, have multiplied tbe standards on tbe amount of programmable knowledge by a
factor of perhaps one hundred, and bave made possible tbe desigo of the algorithm described in tbe
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present repofl, whicb, unlike many of tbe prerious attemp6, coostitutes a significant step toward tbe
generation of tonal music with a computer. Tbe power of tbe present algorithm repon steurs Dot fronl
is scarcb methods3persa, but from its knowledge-based computational model of music: sucb a modet
is limited only by the musical intuition of is designer(s). V/e feel tbat tbe recbniques described bere
ray also be applicable (with tbe incluion of views for higber level planning) to tbe geDeration of
piano music, string quartets or simple orchestrd scores of some length, witbout cbokiog preseDt day
Dtainframes, or exceeding a few thousand rules. We also expect tbe knou'ledge-based muic gener-
atioD tecbnique to eventually change tbe prevalent feeling amoDg the circles witb traditional bias, tbat
computer mwic geoeration is impossible, or immoral, or confined to triviality llrrdabl and
Jacleodoff 77, Hofstadter 79).

ID tbb report, we bave also described a tbeory of voice leading tbat formali'es what we believe to be
a nxlst important discovery of Heinricb Scbenker, namely tbe hierarchical structure of deep linear
progressions, i.e. linear progressions wbose notes :re oot adjacent oD tbe surface. We bave also
made some preliminryy progress toward automating the cognitive lsassning bebind every step of such
hierarchical aoalyses of tbe voice lssding structure of rbe Bacb cborales. We feel tbat rbe hierarchical
linear progressions of our y6ige lading grammar captures the gist of Schenker's tbeory, althougb
firnber researcb is required for a formalization of tbe entire tbeory behind Der frete Satz.

Apart from tbe down-to-earth objectioos $at migbt be raised against tbe approacb of our researcb,
such as our t€merity in ovemrling Bacb in tbe consuainc, or tbe lack of powerful constrains in the
hierarchical voice leading view, we would like to point out some more fundamental besitations about
oru metbod. Tbe computer cborales, dtbougb compelen!, do not display tbe Bacb style sufficiently,
ercept for an occasional cborale ctichC or some (g b 

" 
g) patteru. Due to our decision about not

making a hierarchical plan for barmony, and generating tbe cborale like a four-part countcrpoint ex-
ercise, the modulations are too frequent, althougb often locally robust because of the applicable
constrainB and beuristics. We presently feel tbat a phrase by phrase planning for barmony, albeit
uninteresting, migbt bave resulted in a more loyal style. Tbe most fundamental objection about tbe
style is 1!g inherent greed of the beuristics: tbe program wants all tbe good properties it knou's about
to be tnre about the partial cborale at dl tirDes, never neglecting ro explore all possible candidates,
never forgetting a single good property that it knows about and never cboosing a candidate tbat lacks
a good property instead of anotber tbat bas it, other things being equal, exept tbrougb backtracking.
Moreover, certain oelodic coostrain6 about tbe inngl veisss, altbough robust, are t<x) restrictive, and
are oftcn not followed in Bach's cborales. We presently feel tbat tbe way to improve this procedure
toward a more austere style would go through tbe hand-simulation of tbe algorithm on many cborales,
whicb would lead to tbe discovery of new beuristics, and perbaps new viewpoins. Provided that tbe
proper software tools can be designed, we also sgg this exploration of tbe algorithmic resyrthesis of
a limited corpus of music as a possible and instructive future direction in music analysis, rbat is likely
to reveal profound secrets abour tbe music of tbe masters.

Tbe reasoo we bave applied tbe metbod of our research to a real traditional style, was for tbe purpose
of dlowing an objective evaluation of tbe results, and for probing tbe complexity involved il the
mecbanical generation of a non-computer style of muic. Tbere is of course no obstacle against using
this metbod as a compositional tool. In fact, tbis metbod may actually be easier !o use for composi-
tion, since Dot every style may require a knou'ledge base complexity similar to tbe present project,
because tbe composer, especially in a non-traditional idiom, may opt for a more elegaot, regular and

Bachracking [Golomb and Baumcrt 65] and hcuristic scarch fNillson ? 1.80, Pcarl 83] are gencral rnethods that can be
uscd for solving alm6t evcry combinatorial problcm that involves scarch. Thcrc also $ere prccursoF of the heuristic
rcarch mcthodinrnusic: rvcrycarlyarr icle[Gil l  63]dcscribesascarch algori thmnithahjghbrcadth-f irsrcomponent
dret composcd lhrcc pan scrial music and madc usc of hcuristic ordcring. In this program, thc numerical s'orth of a
partial composition q'as dctcrmined according lo ccrtain musical fcatures of the partial composition. Eight partial
compositions werc \cpt at a givcn time. Al cach program cyclc, a randomly selectcd partial composition s'as crlended
in a random ray according to cerlain rulcs to forrn thc ninth panial composition, and thcn thc composition *'hose nu-
ncrical s'onh *as lcast rzs discarded (this sas not an erhauslive scarch). Since then, scarch tcchnjques wed in algo-
rithrnic music have prirnarily bccn non-hcuristic lBaroni and Jacobonj 76, Hiller El]. Thc present hcuristic scarch
nethod is bascd on [Ebcio8Ju 79, 8 I ].



consistent set of production rules, constraints, and beuristics. A technique similar to ours bas already
been successfully used for generating non-tradirional music [Anes 83], and we iue expecting tbe
knowledge based method to gain wider accept^nce in the field of dgoritbmic composition.

3.12 Artltidal lntelligence lssues

Because of tbe interdisciplinary nature of our project, we bave allowed ourselves the liberty of di-
gressing into deep muical discussions in tbe course of tbe report- However, now tbat we bave bad
our say and reached tbe concluion part, it is necessary to remind tbe reader tbat the preseDt researcb
was in Artificial lnteUigence. We will tberefore swing back and recapitulate on rbe Artificial Intelli-
geDce aspecb of our research.

Tbe Dature of explicit Schenkerian analysis and Bacb cborale style description is non-trivial, and an
expert system for performing sucb a task eveo at tbe competence level of tbe present system, could
perbaps be considered to be achievement of Artificial lnrelligence Fr v. However, we still find it
prudent to stress the A.I. issues addressed by our researcb on a more conventional plane in tbe en-
suing paragraphs. Specifically, tbe contribution of tbe present researcb to A.I., bas been in tbe fol-
bwing areas:

3.12.f lagicprogremmiqg

First order predicate calculus, viewed :rs a practical knowledge representadon language; is clearly far
more clean and precise tban tbe popular knowledge represeDtation paradigms in expert systems. The
only problem with predicate calcuh.rs representations bas been tbeir inability to exteDd beyond ratber
small scale applications [e.g. Robinson and Sibert 80]. Our research has inrroduced, as a by-product,
a new logic programming language called BSL, whicb forms a bridge between Don-deterministic lan-
guages and logic programming. We bave laid out tbe tbeoretical foundations for a tractable subset
of BSL, and we bave designed and implemented a compiler for it. BSL, altbougb fundamentalty
different and less general than Prolog, is efficient enougb to solve at least one non-toy sized problem,
and is capable of performing dependeocy directed backuacking. Tbe user bas access to a quantified
form of formulas in BSL and is not restricted to tbe less natural claual form of logic, or Hom clauses.
AIso, explicit control of order of candidate cboices in tbe backtracling is made available to tbe user
via beuristics. These capabilities are oftcn not simultaneously present in tbe existing implementatiors
of Prolog and similar languages [e.g. Kowalski 79, Robinson aod Siben 80, Chester 80, Borning and
Bundy 81, Colnerauer 81, Pereira and Pono 80, Malacbi et al. 851.

3.12.2 Knowledge representation in predicate calculrs

In order to describe a complex entity, one often finds it convenient to make assertions and combine
knowledge from more tban one point of view. Multiple redundant views have been used for repres-
enting knowledge in expert systems for electric circuit design, for implemeDting equivalent circuits
lSussman and Steele 80]. Hearsay:Il speech understanding system can also be considered as sucb an
implementation wbere multiple levels of knowledge, each having its own view of tbe spoken utterance
are combined [Ermao et al. 80]. Tbe present researcb extends the multiple view idea to a more gen-
eral predicate calculus settiog. Dilferent views are represented via different sets of prinitives for eacb
view. Tbus constraints propagate across vien'points witbout tbe inconvenience of baving to inter-
trarslate.

3.12.3 Xnowledge compilation

[stefik et at. 82J oote tbat finding means of coping witb excessive demands on computing resources
b an issue tbat is becoming very importaDt as more ambitious expert systenrs are developed. A.l.
progranrs sometimes atl€mpt to deal witb probleuu tbat caDnot even be stated precisely (e.g. discov-
ering "interestiDg" tbeorems), and rbe sotution is not as simple as finding algoritbns tbat have lower
asymptotic complexity. One of tbe ways A.I. has used for belping to cope with these problems is the
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Loowledge compilation concepl, whicb gained imponance wben the HARPY speecb understanding
system outdid tbe Heanay-tr speecb understanding systen witb a cnshing superiority by compiling
all acceptable utterances into a transition network [l.owerre and Reddy 80]. Althougb the cunenr
researcb did oot bave a specific competitor to surpass, as HARPY did, tbe complexity of tbe domain
necessitated an extremely efficient implementatioo. To achieve this efficiency, our inplementation
utilized an effective knon'ledge compilation method, whicb was a simple result of the design of BSL
as a compiled non'deterministic language. This method bas resutted in significant performance im-
provemeDt over Lisp or Prolog-based approaches, witbout losing tbe basic flexibility offered by the
predicate calculus paradigm. An inrcresting future researcb topic would be ro go toward more dras-
tically compiled knowledge in BSL in a domain indepeodent manDer, through limited compilation of
tbe idtial-final state relatioru defined by BSL prograrns inro sbles.

3.12.4 Streamlined design of expert systems

We understand tbat tbis issue will be relatively controversial at this date, since mainstream A.I. re-
searcb is still often identifying tbe contribution of an expen syst€m u'ith tbe esoteric control strucrures
tbat it introduces, sucb as opportuni.tic scbeduling lErman et aI. 80, also B. Hayes-Rotb 86], or
multiple "denon" queues [StalLnan and Susman 77]. On tbe otber band, a streamlined arcbitecture
for an expen system is oot only capable of doing a better job in all lilielihood, but is actually more
tractable, and therefore more amenable to theoretical research. Our source of inspiration for the
streamlined design approacb stems from a more established field of computer scieDce, namely com-
puter architecture lPattersoo eL al 81, Hennessy et d. 82, Radin 82], and we feel tbat thjs approacb
is a good one for tbe creation of complex hardware-software systems. We feel that tbe techniques
of sueamlining tbe total hardware-software design, and reducing tbe semantic gap, will eventually
become imponant wben tbe ambitious exp€rt systems of tbe future are implemented.
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APPENDD( A:

Exemples of compulcr harmonizations of chordes

In tbe following pages are numerous eramples of barmonizations and aoalyses produced by the
preseDt version of tbe CHORAL system, wbose rules and beuristics are given in Appendix B. Tbe
nuqrbers (according to [Terry 6a]) of tbe cborales whose harmonizations are given in this appendix
are listed below. An alpbanumeric encoding of tbe cborate melody, and a random number seed are
giveo as input to tbe program. (Tbe input forurat is described in Appendix B.) As it has been ex-
plaioed in tbe text, random cboice is used only for breaking ties during beuristic evaluation, where
tbere is often a single best cboice due to tbe large number of beuristics; tbus tbe program is not very
sensitive to tbe random number sced exccpt iD tbe beginning of the cborale, where all plausible
statting positioDs are rated equally, and tberefore cbosen randomly. Tbe starting position, on the
otber baDd, does affect tbe later stages because of tbe exuemety complex dependencies tbat every
new item added to the cborale has on tbe previorsly added items. Tbe fotlowing harmonizations have
been manually selected, but from only a few versions for each cborale. We are also giving a panic-
ularly dull batuonization of cborale no. 3 (3 bis below), wbicb exemptifies tbe overall $'orst case
bebavior of tbe program. Before tbe computer h?rmoni"ations of no. 128, and no. 48, we also give
tbe version by J.S. Bacb for comparison. No. 128 is an example wbere the program's barmonization
is rather similar [o Bacb's, altbougb this is not true in general; for example tbe program's
barmonizalion of no. 48, altbougb strongly musical, lacks the austere quality of Bach's version, u'hich
seems to be based on a different ordering of beuristics. Note tbat tbe program does not geDerate tbe
hannoni"slions with tbe voices in tbeir proper ranges, but it ensures that a 6ensposition exists that
will bring them to tbeir proper ranges (for example, wben very low notes :ue used in tbe bass, very
higb notes are Dot used in the otber voices so tbat tbe cborale can be llancposed upwards.)

No. 128 (Bacb's version)
No. 128
No.286
No.68
No.39
No. 7l
No. 173
No.265
No.3
No. 180
No. l7l
No.75
No. 165
No. 147
No. 48 (Bacb's version)
No.48
No.96
No. l4l
No. 283
No. 12
No. 139
No.22
No.57

r29



No.259
No.24l
No.2l0
No.82
No.2l
No.28
No.97
No.223
No.93
No.35t
No. 3 bis (worst case example)
No.397
No. 173 bis
No.392
No.33
No. 75 bis
No.73
No.22l
No. 171 bis
No.327
No. 392 bis
No. 324
No. l l
No. l3l
No.6l
No. 312
No. 119

Tbese barmonizations are followed by numerors descant analyses produced by the systcm, of the
cborates listed below. Tbe figures under cacb notebead of a given anatysis indicate, from top to
bottom, tbe deptb (levet) of the stack at tbe point wbere that Dotc was scanned and tbe inpur poinrer
was advanced to tbe Dext not!, the paner statc at tle sarne point, and the scquence number of Oat
Dote within tbe input stream. After the slur-and-noGhead notation for each analysis, we give a trace
of tbe stcp-by-slcp operation of tbe parser. This tracc indicacs, for each step 0,1,..., tbe input note
that was being seen at tbe beginning of tbat step, tbe nodes of the parse tree tbat were ourputed
during that step, tbe new state and tbe deptb (levet) of tbe new stack tbat were att^ined after exe-
cuting tbe step. Tbe notes of the input are given in the form 4pitch>-<scquence number>. Tbe
pitcb is encoded as a pitcb letter, foUowed by an optional accidental, followed by ao octave number
(o4 is middle C). ftc oote witb sequence no. 0 is tbe imaginary fint oote tbat is assumed to preccde
tbe descant line, and tbe notes with scquence numbers 1,2,... are tbe notcs of the actual inpul

No. l3l
No.33
No.39
No. 139
No.2l0
No.24l
No. 397
No. 141
No.22
No.28
No.57
No. t71
No. 392
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No.7l
No.3l2
No.48

Thesc in turn are followed by rcme eadier outpub of the program, sonle of which wcre cited in the
texL Tbe evolution of the knowledge base can to some degree be observed tbrougb tbese. Tbese are
tbe barmonizatioos and descant analyses of cborales no.22, no. 48, no. 57, no. 71, ia that order.

Tbe repeats in tbe original cborales have been ignored in tbe computer barmonizations and analyses.
Some minor modifications to tbe inputs bave also bcen neccssary, because of our early design sim-
plifications tbat were bard-wired into tbe knowledge base, which later appeared to require at least a
ooderatc anount of wort to fir (removing tbese simplifications will Dot Dec€ssarily increase tbe
musicd quality of tbe outpus): Tbe program zlssumes that tbe last two quarterbeats of a pbrase must
be accompanied by a cadence, so if tbe final cbord of tbe cadencc (along witb its soprano note) is
repeated in tbe original chorale, tbese two repeated soprano notes must be tied together to be ac-
ccptable to tbe program. This is wby, c.g., tbe two not€s at tbe cnd of tbe fint phrase of chorale no.
33 were tied. Similarly some dotted quarter+igbtb pattcrns were changed to quarEr-quarter patteros
(as in the end of tbe fint phrase of no. 128), for in tbe former case the program iLssumes tbat the
eighth is inessential, which, in tbe presence of, e.9., cadence constrainG, makes tbe barmonization
difficult for the current knowledge base. AJso, when a modulation to a new key is forced by an in-
essential note in the sopraoo, unnecessary backuacking occurs because the cbord skeleton view is oot
aware of tbe modulation; it may be necessary to renove the "offending" inessentid note from tbe
input, as we bave done by changing tle sequencc g5 (e5 f5) g5 d5 c5 to 95 e5 95 d5 c5 in tbe filth
pbrase of oo. 39.

Here are some remarks about tbe harmonizations of tbe program:

No. 68, last measure: The parallel filtbs between tbe soprano and tenor arising from the anticipation
patt€rn in the soprano are dlowable in tbe Bach cborale style; see, for exanpte, no. 383 lTerry 6a].
Tbese fiftbs also oeur in scveral otber outpub given here (e.g., no. 265, 75). But Bach usually
mollifies tbese parallet fifths by using tbe dotEd eighth and sixtcentb rtytbn b tbc lower part

No. l7l, last phrasc: C major b re-entered tbrougb a II-I "plagal" modulation (see tbe chord skele-
ton view production rules), aod immediat€ly left witbout confirming key (it is followed by tru-V-I in
A minor), whicb is probably too modal for tbe Bacb style, but othenx'ise beautiful. Tbere are similar
modal passages tbat result from tbe plagal modulatioo rules in, c.9., no. 141, no. 33.

No. 312, measure 9, beat 2: tbe G major cbord is I of G major, so tbe program feels free to double
its third, altbough from wbat follows, it may dso be beard as V of C major, whicb gives tbe inpression
of tbe learling note being doubled. (Bacb sometimes doubles tbe leading notc iD less subtle oontexb
wbeo tbere is a melodic reason for it (e.g., no. 210, measure 3 [Terry 64]), but it is arguable wbetber
a computer sbould.)
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CHOR^LE NO. T3T

0. hnrc - Oirrput. (n g54) Sate: u tael t
t. tnput: c5- I Ougut: (n t5-t ) Setc: u l*tcl: 2
2. lnpuc d-2 Oltpur: (o d-2)(s d-l d-2) Sote u lrvd: 2
3. lrsst: d5-3 Outpuc (n d5-3Xs c5-2 d5-3) Sorc: I Lcrcl: 2
l. Input: es*a OufFrc (n c5-4)(sd5-3 c5{) Stete: I Lrvd:2
3. lngut: d5-5 Outpuc (n d5-5Xs c5-{ d5-5) &rrc: I L:tel: 3
6. Ir4ur: c5-5 Outpuc (n c5-5Xsd5-5 c5-5) Strtcr I L:rcl:3
?. lnput: b4-? Ougut: (o b{-7Xs d-6 b{-7) Sate: I bvd: 3
t. lnput: e4-t Outpot: (n e4-tXs b,l-7 e4-t) Stetq I L,crcl 3
9. lnguc e5-9 Ortpuc (lp a5-4 e4-tXn c5-9) Satc: I Lcvd:2
10, lnput: c5-9 Outprt: (s c5{ c5-9) Setc: I Lrrd: 2
I l. lnput: f5-10 orrtprt (n f5-10)(s c5-9 f5-l0Xb d-2 f5-I0) Strte: u krd: I
t2. lnput: f5-10 orrtruc (sg5{ f5-t0) Sote: I lrrcl:2
13. lnput: dS-lI Output: (n d5-ll) Sote: u Lcvd: 3
l{.  lnpur: c5-12 Output: (nc5-l2Xsd5-l l  c5-I2xlpds-l t  a5-12) Sete: I  [ .eveN:2
15. hpur: e5-12 Output: (s f5-10 e5-12) Stete: I l,evd: 2
16. lnput: d5-13 Ougut: (nd5-13)(sc5-12 d5-13) Strre: I  Lerel:2
17. Input: c5-14 Output: (n c5-l{Xs d5-13 d-la) Sate: I l-crei: 2
l& t?nrt: c5-15 Output: (n d-!5)(s d-la c5-t5) Sotc: I Levcl: 2
t9. lnpnr: d5-16 Ou0ut: (bg5-O d-l5Xo d5-t6Xsc5-15 dS-t6) Stete: l l .etd,.2
20. Input: e5-17 Outprt: (n c5-l7Xs d5-16 es-t7) Strte: I l,cvd: 2
21. lnput: e5-l t  OuFut: (nc5-tt)(sc3-17c3-tt)Sere: I  Lercl:2
22. lnput: f5-19 OutFrt:  (n fs- l9Xscs-t6 f5-t9) Sarc: I  brcl;  2
23. lryut: f5-20 Outprt: (o f5-20)(sf5-t9 J3-2O, Sate: I l,evd: 2
2rl. lnput: g5-2t Orqut: (o e5-2lXsf5-20 g5-2lXlp d-|5 g5-21) Strte: u l,crd: I
25. lnpu.: g5-l I Ougot: (s g5-0 g5-2 I ) Strtc: u Lerd: I
26. foput: d5-22 OuQu.: (n d5-22) Satc: u Lctd:.2
27. lrput: 95-13 Ougut: (n g5-23) Satc: u kvd: 3
2t. lnpur: e5-14 Outpuc (n c5-24) Stete: u Lev€l:2
29. laCut: €5-2{ Ouqu(: (s d5-22 e5-2{) Ste(c: I kvd: 2
30. lrput: e5-25 Oltput: (n c5-25)(s e5-24 e5-25) Stete: I Lcvd: 2
31. lnput: d5-26 Ouput: (n d5-25)(s c5-25 d5-25) Sate: I  Level: 3
32. hpur: c3-27 Output: (n c5-27)(s d5-26 cS-27) Stere: I Levd: 3
33. bpur: b{-2E Ourput: (n b4-2t)(s c5-27 ba-2t) Sete: I lrrel: 3
34. lnput: 14-29 Ourput: (nr4-29)(sb4-2Et1-291 Sate: I Lerd:3
35. lnput: c5-30 Ouput: (h.5-25 rJ-29)(n e5-30) Sote: I Lcvel: 2
36. lrpuc c5-30 Output: (s c5-25 c5-30) Setc: I Lrrd: 2
3?. llPur: fS-3 t Ourput: (a f5-31 )(s c3-30 f5-3 t Xh d5-22 f3-31) S.rte: u Lrtd: I
3t. logut: f5-31 Ouqput: (sg5-21 f5-31) Sorc: I lrvd: I
39. lnput: d5-32 Orrtprt: (o d5-32) Stetc: u l.ercA:.2
10. lnpur: c5-33 Ootpo.: (n c5-33Xs d5-32 c5-33xlp dl-32 c5-33) Sotc: I Lerd: I
It. Input: c5-33 Ourpu.: (st5-31 c5-33) Satc: I Lcvd: I
12. InFrt: d5-34 Ougut: (n d5-34)(s c5-33 d5-3a) Stetc: | [.crd: l
a3. lnFrr: c5-35 Ouqut: (n c5-35Xs d5-3a c5-35xb g5-21 c5-35) Sotc: u Levd: 0
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cltoR tLE NO. 33

0. tput: - @urFrj; (n cS-0) Sare: u l,erd: t
t. lnpuf: t4-t Ou(Frt: (n d-t) Sorc: u L,cvd: 2
2. lnput: ba-2 OurFrc (n b,l-2Xs rrt-t b,l-l) Sorc: I l..evd: 2
3. lnput: d-3 Orrtprc (n c5-3Xs M-2 c5-3) Sorc: I l,crd: 2
l. lnpur: ba-a Ou.puc (n M-4Xs d-3 ba-{) Sterc: I Lcrcl:3
5. hpuc d-5 Outprt: (b d-3 b{-,t)(n c5-5)(s b4-, cS-S) Sate: I l,er.eJ: 3
5. lnput: d5-6 Oltprc (n d5-5Xs d-5 d5-6xlp b4-a dS-5) Sare: I Lerct: 2
7. Input: d5-5 Output: (s d-3 d5-6) Serc: I l,erd: 2
t hput: c5-7 Outpgt: (o c5-7Xs d5-5 c5-7)(b el-l .S-7)Sote: u L,etd: I
9. Input: c5-7 Ouguc (s a54 c5-7) Srrac: u Lad: I
t0. lnfut: 35-t Orrtprc (n g5-t) Sretc: u lrrcl: 2
I l. Input: f35-9 Output: (o fss-9Xs g5-t f#5-9) Sore: t l,crel: 2
12. lnput: c5-10 Ouput: (n .5-10)(s ft5-9 c5-10) Sorc: I L,crd: 3
13. lngut: c5- t I Ougur (o e5-I t )(s c5-t 0 c5- t I ) Sqtc: I l,erycl: 3
l{. Input: #5-12 Ourput: (n dg5-12)(s cS-I I g5-t 2) Sere: I L,crel: 3
t3. lnput: e5-13 Ougut: ( lp f i3-9 #5-t2)(n c5-t3)(s di5-t2 c5-l3Xb dcS-12 e5-13) Sare: I  Lerel:  2
I 5. lnpur: c5- I 3 Ourput: (s fi5-9 c5-l 3Xlp gS-t r5-t 3) Sore: u lrrel: t
t7. Input: e5-13 Ourput: (s c5-7 c5-13) Sare: o Levd: I
t& lapot: c5-14 Output: (r cs-t,lXs c5-t3 c5-t{) Sarc: u l,crd: I
t9. lnnrt: t*5-15 OurFr.: (n ff5-15)(s cS-14 tts-t5) Sotc: t bvd: 2
20. lnput: 95-16 Ouguc (n g5-t6Xsf*S-tS gS-16) Sote I Lercl: 2
21. trFrt: 15-17 Output: (n $-t7Xsg5-16 r5-t7) Satc: I Lcrd: 2
22. lnput: 95-lE Ottpun (n g5-ltXsr5-t7 g5-lS) Sate: t Lcvel: 3
23. lnput: f l5-19 Ouryur: (nf#S-l9Xsg5-tt tS5-19) Strte I  Lcvd:3
2{. lnput: g5-20 Oufput: (b r5-17 t*5-t9)(n g5-10)(s fs5-!9 g5-20Xtp f35-19 gS-10) Srete: | lrvel: 2
25. lrpur: 95-20 Oupuc (F eS-t{ r5-t?Xsr5-t7 85-20) Sore: I Lcret: 2
26. laput: f5-2 | Ourput: (u f5-2 t )(s 95-20 f5-2 I ) Sarc: I |'ad: 2
27. lrnput: a5-22 Ourput: (o c5-22)(s f5-2t c5-22)0p t$-l1. cS-221 Sorc: u Lcrd: t
2& lngut: e5-22 Ourgut: (s eS-I{ cS-22) Sate: u Lrrd: t
29. lnput: e5-23 Ouryut: (n e-5-23)(s eS-22 cS-23) Sore: u lrrd: I
30. Inpur: d5-2{ Output: (n d5-2,t)(s eS-23 d5-2{) Sare: t [,erel: 2
31. lrput: c5-25 Olryur: (o c5-25Xs d5-2a cS-25) Stere: t l_evel: 3
32. lngut: c5-26 Output: (n d-25Xs c5-2S d-26) Strre : I l,cvel: 3
33. lngut: M-27 Output: (n b4-27Xs c5-26 b4-21, Sate: I Lcvd: 3
3{. lnput: d-26 output: (h d5-2{ b4-27)(ncs-ztxsb,l-2? cs-2sxb b4-2? c5-28) state: t Lzvd:2
35, lrrpuc c5-2E Outpur: (s d5-24 c5-2t) Sare: I l,evd: 2
35. lnp'ut: c5-29 Oupur: (19 c5-23 c5-2t)(o c5-29) Sote: u L:vd: t
37. lnprr: c5-29 Ourgut: (s e5-23 c5-29) Sotc: u LereN: I
3& lagut: d5-30 Ougut: (n d5-30Xs c5-29 d5-30) Satc: I l,end: 2
39. lnput: d-3 I Ourprt: (o c5-3 | Xs d5-30 cS-3 t ) Srrrc: I L.rcl: 2
f0. lnput: d5-32 Outpur: (p c5-29 c5-3lXn d5-31)(s c5-31 d5-32) Sarc: t Lcvet: 2
ll. lnpur: c5-33 Ougut: (n c5-33Xs d5-32 e3-331(lp c5-31 c5-33) Strtc: u t.ere{: I
12. lnput: c5-33 Ougut: (s e5-29 c5-33) Satc: u Lcrd: t
{3. lnput: d5-34 Ourput: (n d5-3a)(s cS-33 d5-34) Sote: t l,erd: l
14. lngut: c3-35 Ouput: (n c5-35)(s d5-3a cS-3S) Sare: t l,ere.t: 2
15. lngut: brl-35 Output: (n M-36Xs d-35 ba-35) Setc: t l.,aet: 2
16. lngut: c5-37 Outpur: (tp c5-33 ba-35Xn d-37Xs b4-36 cS-32) Sotc: I lrrel: 2
17. lnpu.: d5-3E Output: (n dS-3EXs c5-3? d5-3t)0p ba-36 d5-3t) Sere: u Lcvd: I
It. lnput: d5-3E Ougut: (s e5-33 d5-3E) Sorc: I l,rrd: I
19. lnput; c5-39 Ouqut: (o c5-39)(s d5-3t c5-39) Stere: I l,crel: I
50. kput: b4-40 Ouqur: (n b4-40Xs d-39 b{-do) Sare: I krd: I
51. lnput ba-{l OutFt: (n M-{tXs b{-{0 M-al) Sore: t bvd: I
52. lnput: 14-42 Outprt: (D ra-{2)(s M-{ t ea-{2)(lp e5-33 r,,-rl2) Strte : u Levd: 0
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CHORALE NO.39

O. lnout: - Qgipul; (a c5-0) Strte: u l'erd: I

;: 6;;, cs-t Output: (n cS-I)(s c5'o e5-l) Sate: u Lwd: I

;: il;,ars-l ourpu,t (n #5-2)(s c5-t fi5-2) Stme: I Lgvd: 2

3. lnour: c5-3 ougur: tp 
"ir 

Jii--Dt" c3-3)(s drs-2 e3-3xb ds5-2 G5-3) sotc: u Lerel: I

l. l"-rrrr c5-3 output: (s cS-t c5-3) Sote: u l'cvd: I

;: il;t t*S-r O.,,putt (o ftS-'t)(s c5-3 tt5-4) Strrc:-l l-cvcl: 2

;: il;, gs-s ourpu,, (n g5-5Xs tts-' g5-5) Srerg-l l-:rd: 2

;: 6;;'ii-6 ou,pu,, (o e5-6Xs s5-5 r5-5) Srete: I l'erd: 2

; 6;;, s5-? ou'Put' rb es-i rs--ettn sS-?)(s ls-6 35-7) sotc: I lgel 2

; ;;;; irs-e outpu,, io frs-tXs g3-7 tts-s) st'n:-l L'd: 2

10. lnput: c5-9 Output: tn c5-gxi flS-t c5-9)(b 15-6 G5-9) Satc: u Lcrel: I

ii. irp*t c5-9 output: (s c5-3 e5-9) Stete: u l-erd: I

i;: ffi;iJ-to or,pu* (o e5-10)(s c5-9 e3-t0) Strre: r lrrel: I

ii. Lp,, cS-l I Output: (n c5-t t) Sotc: u Lad:.2 -
;;: 6J;' ii-tz o"eut' (n d5-12)(s d-t t d5-t2) sotc: I Lerel: 2

15. tnpur: c5-13 Outpur: t" tl-lfiit aS-12 e5-l3Xb cs-l I c5-13) Stete: u lrve'l: I

;;: ifi;,c5-13 Output: (s e5-10 e5-13) Stete: u l"cvel: t

i r .  i i l , ,  d5-14 Ouqut: (n d5-t4)(s e5-13 ds-t4) Sate: I  l rrcl :  2

ii llil,, t-l5 o.,,putt (o c5-t5Xs d5-t' c5-15) $s133 | ['cvd: 2

ig. tiu,, b4-l 5 Output: (n b'l-t 5Xs d-t5 b4-t 6) Sare: I Lerd: 2

;: 6;;ttl-tr ot"pur: (n r4-I?)(s b4-16 r4-l?) satc: I Lcrd: 3

2t. hput: b4-l t outpuc a; ;--t 
j rl-r:Xn ba-l EXs rl-l? b4-tt)(b e'-l? M-I6) Sntc: I l'creN: 2

ii. G.,, bt-lt Ourpur: (s b'-t5 b4-lt) S'al€: I l-erel: 2

ii. 6u,, r{-19 output: (n e4-19)(s M-l t e4-19) $'81g; I L'"cl: 2

ii. ir6,' rl-20 output: in e'-20Xs e4-19 14-20).Sare: I Lrlrel: 2

25. Input: bl-21 Output: 1p tS-f l rl-20)(n br-21)Ge'-20 M-21) Stetc: | [rrd: 2

Zi. G",tc5-22 OutPuc (o cS-Zf )ts b4-2t c5-22) Sote: I Lcrel: 2

27. Irsrt: d5-23 Oupur: i" as-iliit 
"S-22 

d5-23Xb r'-20 d5-23) Strre: u l'crcl: I

ZS. l;u,, d5-23 Ouqut: (s e5-13 d5-23) Strte: I l'cvd: 2

iS. lrvu,, 14-24 Output: (n r4-2') Strte: u l3vel:3-

iO. rrvr,,  b4-25 OutPut: (nb{-25)(sr{-24b4-251 Sate: |  [*vel:3

ii' tp"t' c5-25 Ourput: (o c5-25)(s b4-25 c5-26) sare: | [2r€l: 3

Ji, lr,p.r, d3-27 Output: (n d5-2?Xs c5-16 d5-27) $q16; t lzrel: 3

33. lnpur: c5-2E output: i' J-itiit d5-27 e5-2t)(b e4-24 e5-2E) Strte: t t'erd: 2

34. Inp,ut: c5-2t output: iels-rl is-z:)t' as-23-€5-2txlp d5-23 e5-2t) se'e: u l-cvd: I

iS. frp,.,,, c5-2t Ouqut: (s c5-13 c5-2t) Strte u-krd: I

ll. G.,, c5-29 Ortpuc (n c5-29)(s c5-2t c5-29) Srrtc: u L:rd: I

ii. Iri-,t 15-30 Outprn (o d-30) Sote: u l-ctdz-2^.

;i 
-t;;t 

gi5-3 I Output' (n gas-l t Xt ts-30 s*5-3 t ) Strte: I l'svd: 3

39. trguc 15-32 output: if- 
'i-lo 

Ji-srl(n-rsil](s 835-31 rs-32) Sote: I l-pc: 3

r0. I4ut: b3-33 ouqut: ii is-lllis ts-32 b5-33)(19 835-3 | b5-33) Sotc: u lrvd: 2

f i. Irfnl,, b5-33 Ourput: (s e5-30 b5-33) Sorc: | ['crd: 3

12- lnput: r5-3r output: lp ts-ro1s-lll(n d-3')(s b5-33 15-34) strre: | lrvel: 3

13. lnput: 35-35 Ouqrt: iIgS-lSlA tS-3{ g5-33Xlr b3-33 g5-35) Stetc: s Lcrd: 2

ii. fr"r,is-rs O.,,nr,, (s e5-30 g5-35) Sorc: l-l*td:.2

ii. 6",, i*s-lo Ouqutt (o fls-roxt g5-35 fs3-36) Sarc: I Lerd: 2

{6. tnpur: .5-37 gn ,o"r, it J-llrtiti-36 e5-3?-Xh 15-30 c5-3?) sorc: u Levd: I

ii.6.rtc5-37 Oltgut: (s e5-29 c5-3?) Sate: u l-erel: I

ii 6u,, f#5-3E Outputt'(o ffS-f ext tl-3? ft5-3t) Strre: | lrrel: 2

iS. 
-d*,95-39 

Output: (n g5-39Xsfl5-3E-g5-39) Sore: I Levcl: 2

50. lnput: L-lO Otrqutt (D !5'{0) Sotc: u Lrrd:-3

li. &i"" 95{l Ottp'ut: (n95-41) Sare: I Lcrrd:-2

li. G",, is-l t o",pu,, (s 85-39 s5< I ) so11: I l'crd: 2

lr- rri*t L-lr o"putt idcs-3igs-ll)(n d5{2) Sate: u L'crd: I

li. ffi,t d5-42 Ouqut: (s c5-37 d5{2) Sate: llztet:2

iS. inn,, c5-13 Outprc ir c5-{3)(s d5-'2 c5-'3) 5tl13; I lprel: 2

li. iril,,b4-44 OutPut: (n M-4{Xs c5-{3 b'-") $61s; | [2rd: 2

li. *, el-rl5 Ourpuc (n r4-45)(s M-{ 4 t4151Stetc: I ['erel: 2

lg. i;.,, c3-45 Output: (p e5-3? e'-{5)(n c5-{6) Stere : u lrvel: I

lS. ir}u,, c5-45 Output: (s c5-3? c5-46) Sate: u-L'cvel: t

b. I"g",t d5-{? Output: (n d5-47)(s c5-'6 d5-47) $lr1g1 | l'vel: I

ii. 
-li",t 

cs-at OutPut: (n cS-{t)(s d5-'? cs-'s) 5311s; I L'vet: I

il. 6",t bl-49 Oltput: (n b{-rl9)(s c5-4t b'-49) Sete: I lrrel: I

63. Input: er-50 outpuit it 
"t-soitt 

u-49 e'-30)(b es-r5 ed-50) State: u l'crel: 0
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CHORALE NO. I39

0. hpuc - QliFr; (n grt{) Strts s Lcrvd: t

l. lngut: c{-l OutPut3 (o cl-t) Setc: I lrrd: 2

i. t,, c:t-2 OrrFrr: (n c4-2Xs c{-l c4-2) Sotc: r L:vd: 2

3. lryuc g,l-3 Ouqut (n gl-3) Satq u L+rel I

l. r"1". ll-l o"putt (s g'l{l 34-3) Sotc: o l'erd: l 
-

S. lnp"rc ;4-a OuAufi (n g4{Xs gl-3 g'-') SEte: u-L:veN: I

l. Infr,t L-5 OutPu,t (n r4-5)(s t4-{ rl-5) Strte I Levd: 2

?. loput: M-6 Output: (n b'-6Xs rl-3 bl-6) Sole: l 
-L:td: 

2

e 
-fri". 

c3-? Ouqut: (o c5-?Xs b'-6 d-7) Stete ll.etd:2

9. tnputt b4-t Oucpuc (n M-t)(s c5-7 M-t) Sere: I Lcrd: 3

io. irpu,, c5-9 Output: (19 .5-i b'l-t)(n c5-9)(s M't d-9) Stete: I l'crd: 3

I t. lngut: d5-t0 orrtpuc (n rtS-10)(s c5-9 d5-l0Xlt M-t d5-10) Sote: I l'crel: 2

lU. fnpur: d3-10 Outprt: (s c5-? d5-t0) Sate: I Lad: 2

13. lnguc g4-t t Orrput: (l g'-l t ) Sarc: I Lcvd: 3

t4. lnPut: 
"S-t 

Z orrtput, (n d-t 2) Sore: I Lcrd: 2

iS. tp",, c5-12 Ourpur: (b s4-{ d5-t0)G ds-t0-c5^-t2) Stetc: I l-etd: 2

ii. ini". b4-13 Output: tn ul-tftts cS-t2 b4-r3) Strrc: I LcYel: 2

ii. I"p",t e4-14 Output: (n e4-t{)(s ba-13 r4-l') Stere: I Lerd: 2

l& Input: gl-t5 Ortput: ti er-lSiit tl-lr 34-t5Xpds-t0 3a-t3) Sotc: r [rrd: I

t9, lrrguc ll-ts Orr,put, (s 3a{ 8a-15) Sote: ulrrd: I

20. trpr.rt: 
"S-te 

O"rprt, (o c5-15) Sote: u ladzT

ii. f"gt .t d-17 Output: (n cS-l7)(s d-I5 cs-f 7) Sotc: n I'ztclt 2

2 2. lnpuc a{-l t Outprt: (u g4-l t) Satc: u Lrvd: -t

23. InPUt: !l-te o"'put: (s84-15 34-tt) Sate,uI'cve'l: I

ii. 1"p",, ir-tc o"rFr* (nil-r9xs gl-tt tr--!9)-S'ore: u Lar{: I

is. r"p,r" il-ro o.,Du,' (n f4-20)(s g4-19 f'-20) Sote: I l'cre* 2

ii. 1"i,, f4-2 t Output: (n fa-2 I )(s f4-20 t'-21) 6trte: I l-crcl: 2

il. IrW" o4-22 Output: (n oa-22Xs f4-21 d-22) Sotc: I LereN: 2

is. loFr., 94-23 Output: (p ga-19 e4-221$g4'2Jl Sntc: u l'cvel: I

29. lnpur: !l-23 O,rrpu,t (s g4-19 34-23) Stere: u ['crd: I

io. lrrpu,t !r-zl Ourput, (nil-ll)(s ea-23 t4-24)-Stzre: u Level: I

f t. np,rr, il-2S O.rpu,, (o f;t-25)(s gl-24 14'25\ S-are: I Lrvel: 2

iZ. lnp,t,, c4-25 Output: (o c'l-25)(s f't-25 c'-26) Strc: t Lcrel: 2

ii. 1"p.,. d4-27 Output: (n da-27Xse4-26d4-211 Sare: I Lerel:2

il, tog.r,, cl-2t Output: (n c4-2t)(s d4-21 c1'2tl Sate: | ['erd: 2

35. lrpuc d4-29 ourprt: iU sr-rl et-2t)(a d4-29)(s c'-lt d{-29) Strre: I l'erd: 2

ii. f"i". d,t-30 Outprc (n Cl-lOXs Or-29 d'-30) Sote: I Lcrel: 2

ii. 
-f"i",t 

c4-31 Outprr: (o c'l-3t Xs dl-30 G''-3ll Sare: I l.crcl: 2

if. fnpt" f3a-32 OutP'trc (n fi"-32)(s c'-31 ff''31) Sarc: I lrrd: 3

ii. f"ir" gr-33 Output: (ag{-33Xsf*4-32 t'-33) S'rtc: I L:rd:3

ro. t p,rr, ll-rl O,rrpr,' (n il-llxs gl-33 94-31) Sate: I Lcrd: 3

al. lnpuc f34-35 Ourpur: (b c4-31 ga-3txr ft4-35)is ea-3a f#4-35xb 34-3{ fta-35) sotc: I Lcvd: 2

a2. Inguc f*4-35 OutPut: (s c4-3 | ft4-35) Sstc: I Lar!: 2

13. lnput: 9rl-36 Outprt: to Cl-f Cltt f*l-35 g{-36-Xp c'-2t gl-36) Sote u l-crd: I

rl. bOrt: il-le O.rpu,t (s t4-24 3{-36) Satc: u Lctel: I

15, lnptrr: il-lZ Ou,gu,, (n rl-l?Xs gr-35 14-37) Stete: I lsd: 2

re. npuc b{-3E Outprr: (r b{-3E)(serl-37 b{-1!] Srete: t Lrnd: 2

f?. tngut: c5-39 orrrprt: (n c5-39Xs M-3E c3-39) Stere: I Lere{: 2

It. lnguc g4-{0 Ouqut: (S ga-36 c5-39)(n g4-40J Satc u Lerd: I

19. lnPut: !l<o o"put: (sg4-36 94-40) strte:.u l-cvel: I
jo. 

Glu,, il-lt orrrpu,, (n 8{{tXs 84-'0 t4-l-t)^Sote:.t 1"3:

tl. hpuc il-'rz O.,tputt (n f'-'2)(s g4-4 | l'121Sate: I l'ercl:

li. f"p"" cI-13 Output: (n d't3Xs f'l-42 eA-411Sarc: I l'cvd:

li, 1"i'U,, d4-{4 Outp'ut: (n d.-.rl)(s a'-'3 d111].. 
'-ttf Jat|j

;;: il;;; ;j; o,il; ii cr-rsit' d'r-.4 c.-'txb sa-{r cr<ts) strte: u r'erd: 0
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clroR LE NO.2l0

0. laput: - Qgjpsil (n cS{t) Sarc: u l'*rd:-l

;: ffi; cS-t Outvtrt: (n eS-tXs c5{ G5-l) Strts u l'crd: I

;:il;; J-i oui',, (o c5-2)(s Gs-l c5-2) sote: uL:vel: I

;: ffi; E-s odu,' (n d5-3Xs e5-2 d5-3) sote: | 
-Lerd: 

2

::6;; Ji o,i',, (o cs-rXs d5-3 c5{) sorc: | lrYel: 2

;: 
-du" 

ul-s outPt' (n M-SXs c5{ b'-3) Serc: I Lerd: I

i. ti"c .r-o Ou,pu,, (n r'-6Xs brl-5 e{-6) Sotc: I Lcrd: 2

;: il;,;-t ootp.,t, 1p e5-2 r{-6Xn c5-7) Sorcr I l-evd: I

; ffi; J-? ourpu,, (sc5-2 c5-?) sote: u lcrel: I 
,

; t;;; r*s-a o,,rp,r,, (n f#S-t)(s 
'5-? 

fss-t) Sarrc: I Lcrel: 2

;;. ;;, g5'9 Ouqut: (n gS-9Xs frS-t s5-9) Snts I lzvel: 2

t l. lnPut: e5-t0 Outpt: (o c5-10) s'rte: u Lrla: t

i;: fri J-l I oo,pu,, (n rs-t l) Satc: I Lerd: 2

ii. 
-r'i"i rs-r r orrtpur: (s 3s-9 r5-l t) setg: t f-!, r

t.. lnPuc s35-t2 Output' iiets-rZltt ts-!t qsi:l $11133 | lcvel: 3

t5. lnpur: r5-13 ouqur: (h rs-l r e_o1-^12](".s::p)G ts-li .s-rrltu Fs-r2 d-t3) sate: I Lercl: 2

il. irilc 6-13 ouqrut: ts rs-t t d-t3) Sore: I lrrd: 2

l?. lnpot: b5-14 Output: (o b5-l4Xsr5-13 b5-1") Stetc: I ['evcl: 2

;; ffi io-ts ou,put' (o c5-15)(s u3-l' c6.t5) Snrc: I Lcvel: 2

19. Incot: bs-t6 orteut: tl J-itilsl(nb5'l6J{sc6-rs b5-t6) Sotc: I l'crd:2

;6: ffi;, is-tl o.,tp"' to us-tzlts b5-16 b5-17) s.rrc: I L:rcl: 2

2 l. lnpc r5- t t (hrq'ut: to tS- t A)tt tS- t 7 r3- I t)-Sote : I l-ct d: 2

;;: 6;r, .s-tc outPt'" (n c5-19) Stetc: u l2vcl:3^
-zi. 

6"c c5-20 Ouqlrt: tn cs-uOits eS-t9 c5-20)-Sare: u Lsrd: 3

il. rnpt,, f5-2 1 Output: (o f5-2 1 Xs c5-20 f5-2 1 ) Sete: I l:vel: {

25. Lput: c5-22 ouqnrt: ['i-i6'rs-zr]9 f-?.lt 
r3-21 cs-22) Sate: I l'crd: !

26. IrFrt: d3-23 Outprc ilti-f lit*-22 d5-23xh f5-21 d5-23) S'ote: I l'crd: 3

;t. ilFr" d5-23 Ouqi'c (s c5-20 d5-23) Sote: ll'erd: 
'

ii r"i." as-il orrtp,t: in d5-2'Xs d3-23 d5--2'lr) Sote: I l'crel: I

ic. i;*t c5-23 ottprt: io c5-25)(s d5-24 c5-25) sate: I Lrvel: tl

30. lnput: e5-26 Output: ifp 
"S-fO "5--2i)g 

e5-26) Sete: g l2vet: 3

Jl. 6." e5-26 Outprt: (s e5-20 e5-26) Srrre: u l-erel: 3

32. lnrt: fi3-2? Outpucinf;5-2?)(sc5-2-61:3^]1) Sate: I l.evel: 3

33. Irynrt: g5-2t Ourput: (ig5-2E)(sf*5'21 
-g5-2.E) 

Sete: I Level:3

il. 
-rnp",t 

is-29 o.tp,,tt (o c5-29) stetc: u-['crdt-l

ii. fri",,15-30 orrtprt: (rd-30) Sorc: I I aeL 3 
-

36 Inpoc 15-30 otqut: it cs-lr g19l(! Gs-l|1-30) Strtc: I l"crd: 2

ii. G",,d-30 Ourrc (sr5-tt15-30) Sa9'-lr!1'a: r

3E. lrgut: 93-31 ourPut: ia g5-31)(s l5-10^s-5--,3-l)-Tte: I Lad: 2

39.InFc f*5-32 (}trtprtiJr*s-rzlttgs:1t tft-3.1) SotG: I l'vd:2

rtO. lrvuc c5-33 ouqoci"-ts-liliiioi-12 c5-13)(b c6-15 c5-33) satc: u l'cvel: I

ii. 
-1"p",, 

e5-33 Ouqut: (s e5-? c5-33) Scrc-: 1!3d: 
I

ii. ilr,t' e5-3' ourpur: ir c5-3a)(s c5-33 c5-31) Strte: u Lcrd: I

ii. r"t ,, c5-35 ourput: in c5-35Xs ts-l!:1-111 Sanc: u Lerel: I

aa. Inpuc d5-36 Ouqrt: ir d5-35)(s c5-35 d5-36) Stete: I l-crd: t

ts. tnp"c c5-3? output: io *-ttr,t d3-39 c5-111 sote: I l'crd: I

il. i"ilu,, b{-3t Outprt: in u"-3tXs c5-3? b4-3t) S'Bl': I l-'ivcl: I

r?. tnput: er-3e ortprr: i;:;-3;ii;;-3s ea-3e)(h c5-35 rrl-3e) sotc: u [rvd: 0
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CHORALE NO.2{I

0. lryuc - Qlqos (n 34{t) Sotc: s Lcrd: t

l. lnpuc ca-t Orrqrlc (n cll-l ) Strte: u l'ctdt 2

;: 6;;t ol-z O,,,p,,' (o d'-2)(s cr-l 44-2) Srete I lrvd: 2

i. 1"i"" d-3 OutF|c (a ca-3Xs d'-2 c'4-3) Sotc: I Lcvd: 2

l. 6t,, f4{ OutPur: (n f4-aXs c'-3 frl-l) Sote: I Lcrd: 2

i. Lfr,t g,l-5 Outprc (o g4-5Xs f'{ g'-s)(b cf-I34-5) Sctc: u l'crd: I

i fop,r,t il-S OuC",t (s 34-0 34-5) Sete: I t'erd: I 
-

i. ffi" i+o Ou,pu,, (o il-e )ts 3rt-5 3{-6) -Srerc:-u- 
l'rrc: I

f 
-f"ir" 

il-? Ouquc (n f'l-?Xs g4-6 f4-7) Slrtc: l-l"erd: 2
i. du,t a{-t Ouqot: (o ca-t)(s f4-7 c4-t) Sotc: I Lcvel: 2

10. tnFrc d4-9 ortqut: (r dl-9Xs c,l|-t d{-9) Stete I I'"cL 2

ii. 
-I"ixr,'34-10 

Ortput: (b t4-6 dJ-9Xng'-tO)-Stltc: u ltrd: I

t2. Input: ll-to O",p"t, (s ga-5 g4-10) Sote, 1 lrrcl: I

ir. roprr.' i-t t or,ptt (oil-t i)(s gr-10 r'-l I ) Sate: I lrrd: 2

il. fnp,rt, b4-12 Ourprt: (r bl-l2Xs rl-lt b'-12) Satc: I Lerd: 2

iS. lrpu,' d-!3 Ouqot: (r cS-l3Xs b'-12 cs-I3) Sste: I L:vel: 2

ii. 
-1"p",' 

b4-14 Outprt: (F g{-10 c5-l3Xn b'-14)(s d-13 b{-l') SorG: I Levd: 2

iZ. f tpr,,  r{-15 Ouput: (o U-lSXs b4-l i l  r4-t5) $q13; I  l2rcl:  2

ii i"g",, g4-t 6 Orryur: (r 8&l6Xs e4-15 3a- l6Xle c5-13 :'-15) Satc: r Lerd: I

ig. l"i*" ll-t o o"tP",, (s grl-t0 g4-t6) Sntc: u Lcrd: I

;b. try'r. il-t'l o"qp,,* (ril-t7xs gr-t5 3'-17) Sate u L:rd: I

21. bp.rc .S-l a Ou,purt (n d- t E) Stetc: u Lct& 2

ii. l"p,tc b{-19 Ouput: (n M-l9Xs cS-lt b{-19) Sotc: | ['crd: 2

ti. 
-fi. 

rrl-20 Ouput: (u r'-20Xs M-19 14-20) Sotc: | ['crel: 2

!i. Ir,p",t g4-2 I Ouput: (n trt-2 I Xs 14-20 ga-2-t )Sret€: I l'evd: 2

rs. r"nr,' ir-zu orqt,t (n ri-: r )(s gl- 2 l i'-221(V d- l t t'-12 ) Strtc u l-errl: t

26. tnpuc ta-22 OutFt: (s 34-t7 f{-22) Sote:-t-Lcrd: 2

ii. G",, a{-23 Orrprt: (n e'4-23Xs f4-22 4-231Sote: | ['acN: 2

ig- top.r" d{-24 ouqut: (o d4-24Xs cl-73 u'241Sata: I L:rd: 2

ZC. ilpr,t 94-25 Ouqut: (b g4-17 da-2')(n e"-25-) Strtc: u l-cvcl: I

30. lrgrt: !l-ZS O",gt ,, (s 84-17 3{-25) Sate: u. Lerel: I

it. Irpu,, ir-26 Ouqu,t (o f{-26)(sg{-25 14-26\ 591s1 | l*ael: 2

iZ. tp"rt e4-2? Outprt: (n e{-27)(s f4-25 ea'27\ 5ajgl I kvd: 2

ir. upu. d{-2t output: (n d{-2t)(s G/,-21 de'zt\ $q13; I l3rd: 2

il. t rp,r,t ol-29 Output: Qp 3a-25 d4-2tXn e4-29.)(s d4-2E e4-29) Satc: I Lerc{: 2

is. f"p",' fa-30 OrQut: to ti-foltt tr-29 f'-30)0p d{-2s f'-30) Sotc: u L:rd: I

36. laloc fa-30 OstFrt: (s:'-25 f4-30) Sctc:-ll'ere* I

il. ton,, cr-31 Outprr: (r al-31)(s f'l-lO cl-f-!l lata 
I l'crd: I

ie f"e,r,, 4l-32 Oupuc (o da-32Xs a{-31 d4-31) Sare: I lrrcl: t

39. lryur: cr-33 Ouput: ii cr-33)G dr-32 c'-3t)(lp grl-25 c4-33) Satc: u l'crd: 0
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CHORALE NO.397

0, lnput: - Q;ipui; (n cS-ll) Strtc: u l-crd: t
l. lnput: r{-l Outprt: (n r4-l) Sotc: u brc} 2
2. Input: b4-2 Ouqut: (o b{-2)(sd-l M-2) Salc: I l,cvd:3
3. lnput: d-3 Output: (n c5-3Xs ba-2 d-3) Strle: I la-d: 3
l. lngut: M-4 Output: (p r4-l c5-3xo b4-4Xs c5-3 bl-l) Sarc: I l,crdr 3

J. lnput: r4-5 Ottprt: (r ra-5xs b4-a r4-5)(b d-3 d-5) Stetc: u Letd:2
6. lopuc rd-5 Output: (srJ-I e4-5) Strte: u lr,t:l-.2
7. lnpur: rd-5 Outpuc (nr4-6Xsr4-3 t4-6) Strtc: u L:rd: 2
& tngut: M-7 Output: (n b!-?)(s 14-6 M-7) Sate: I l,crd: 3
9. hgut: d-6 Ortprt: (n cS-t)(s b4-7 d-t) Strte: I Lerd: 3
10. lnput: b4-9 Ouput: (19 ef-6 d-t)(a b4-9)(s cs-t ba-9) Sare: I Lcvd: 3

I l .  lnput: r{-10 Ouryur: (n r4-t0Xs U{-9 e4-t0)(tp d-t r{-10) Serc: u Lad:2

12. lnput: r4-t0 Ouryur: (s r.t-6 r4-10) Sotc: u l2rclr' 2
t3. Ingut: c5- | t OutFrt: (o cS-l t ) Satc: u Lerd: I
lf. lnput: cS-lI Ouguc (s c54 c5-lI) Sotc: u LerrN: I
t5. tnput: d5-12 Orqut: (o d5-t2Xs c5-t I d5-12) Strre: I |.acl: 2
15, lnput: d-13 Output: (r c5-t3Xs ds-I2 c5-t3) Strte: I Levcl: 2
t7. lnpur: bJ-t4 Ouqut: (o ba-l{)(s c5-13 b4-ta) Strte: I  [ ,crel:  2

l& lnput: b{-15 Ouqut: (r bl- lSXs M-14 b4-15) 5a1g; I  kvd: 2
19. lryrrt: c5-16 Ouput: (b .5-t t ba-tSXn d-!6)(s M-15 d-l5) Sotcr I lrrel: 2

20. lnput: d-l? Ouput: (o 6-17)(s d-15 d-!7) Sare: | lrvel: 2

21. In9'ut:  d5-l t  Ouqur: (nd3-tt)(sc5-17 ds-tt) Setc: |  [ ,ercl:2
22. lnpsr: d5-19 Outprt: (r ds-l9Xs ds-lt d5-19) Srrrc: I [,crel: 2
23. lnput: c5-20 Output: (o d5-20xs d5-19 c5-10)(b b{-t5 a5-20) Sotc: s l,erd: I

21. Input: c5-20 Output: (s c5-t I c5-20) Strte: I [,erel: I
25. laput: c5-2 t Ourput: (n c5-21 )(s c5-20 e5-2 I ) Strtc: u l-erd: I
26. tngur: d5-22 Ouput: (n d5-22Xs c5-2I d5-r2) Sote: I Lad: 2

27. Ingut: c5-23 Grtpuc (n c5-23Xs d5-22 c5-23) Sote: I l,crd: 2
2& Input: b{-24 Outprt: (a bl-2aXs c3-23 b4-Za) Sotc: I l,cvd: 2
29. tnpnt: e4-25 Ottput: (o e4-25Xs M-24 t4-751Sete: | lrvel: 2
3O. lngut: c5-26 Ourput (b c5-21 e4-25)(n e5-25) Stete; u Lerd: I
31. lngur: e5-25 Ourput: (s e5-21 e5-16) Sale: u Leve.l: I
32. Ingut: d5-27 Ouput: (o d5-27Xs e5-26 d5-27) Sete: t [.ad: 2

33. lnput: d-2E Output: (a c5-2E)(s d5-27 c5-f t) Sete: I Level: 2
3{. lnput: b4-29 Oltput: (n bf-29Xs d-2E b4-19) Sate: | [.arcl: 2
33. lnput: c5-30 Output: (19 c5-25 b4-29Xn c5-30) S.rtG: u L:rd: I
36. Inp'ut c5-30 Ougot (s 6'26 c5-30) Sotq 'r Lerd: I
37. Lnr: d5-3 t Ouqur: (r dt-3 | Xs c3-30 d5-11) Sorc: I LerrN: 2
3& lnput: d-32 Ouquc (r t5-32)(s d5-31 c5-12) Solc: | [.rd: 2
39. lnFt: brl-33 Ortpur: (r bl-33)(s c3-32 ba-33) Sntc: I l-ad: 2
10. Innrt: b4-3a Outpt: (n M-3a)(s bl-33 b'-l'l) Satc: I Lerd: 2
It. lngut: c5-35 Output: (h G5-30 ba-3dXo c5-35Xs M-34 d-35) Stete: I Lcrd: 2

12. lrvul: c5-35 Outpt: (o c5-36Xs d-35 d-35) Satc: | [,cvc{: 2
rl3. lnpuc d5-3? Output: (o d5-37)(s d-36 d5-37) Sate: I Lcrd: 2
aa. hPut: d5-3E Ouput: (n d5-3EXs d5-37 ds-tt) Sete: I l-crel: 2
15. lnput: c5-39 Output: (n c5-39)(s d5-3t c5-t9)(b ba-3a e5-39) Sate: u Lerd: I

15. lnpur: c3-39 Output: (s c5-30 c5-39) Sote: u lrvel: I
17. laPut: e5-{0 ouqut: (n c5-a0)(s c5-39 c5-{0) Strte: u kvd:
a& lngut d5-41 Outpur: (n d5-{ I )(s c5-.10 d5{ I ) State: I L:rcl:
a9. lnput: c5-.12 Ourput: (o c5-{2Xs d5-{l d-42) Sate: ! Lerel:
50. lnpnt: b4-43 Outprt: (n bil-43)(s d-42 ba43) Sere: I l,crel: I

5l- lrPuc 14-14 Ourpuc (n ra-4{Xs M-43 e'-14)(lp e5-40 r4-{4) Sotc: u L:rd: 0
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cttoRALE NO. l4l

0. lnpuc - Ourpuc (a c5-0) Satc: l Lerd: I

t. lnpuc .4-l orrtpuc (n rd-l ) Sote: u lttd:. 2

2. lapuc c1-2 orrqut (n oa-2) Sote: u Lrrd: 3

3. tnguc r4-3 Output: (r rt-3) Stete: u l.stel:.2
l. bgut: r{-3 Orr.PUr (s r4-t rf-3) Sotc: n Lcrel: 2

5. lnFc brt-4 Ouqut: (r b,t-,lXse4-3 M-{) Sote: I Lcve} 3

6. lnpur: d-5 Outpun (r d-SXsM-a d-5) Satc: I Levd: 3

?. Input: d5-6 Output: (n d5-5Xs d-5 d5-5) Stete: I Lcrd: I

L tnput: M-7 outPnrt: (b c5-5 d5-5)(n bl-7) Sotc: I lrrd: 3

9. lopur b{-7 Ouqut: (h r'-3 d-SXs c5-5 b{-7) Sate: I l'ctel: 3

10. Inpuc l4-t Ourpuc (n d-txs b4-7 ra-EXIP d-5 r4-t) Sotc: u l'ccd:2

t l. lnput: r4-t Ourput: (s r4-3 l4-t) Strte: u l,crd: 2

12, Input: c5-9 Output: (n c5-9) Scrlc: u l,crd:3
t3. lapt: bl-t0 Outpuc (a b.t-tOXs d-9 b{-10) $ate: I L:vrN: 3

lf .  lnpst: rr l- t t  Outprt:  (oea-lIXsba-10 ra-l t)(b d-9 r4-tt)  Sarq u l .ztd:2

15. lnput: r4-l I Ouput: (s l4-t rrl-l I ) Sote: u l.ctol: 2

t5. lnpur: b4-t2 Ourput: (n brl- l2Xsr4-t l  b4-12) Sere: I  l rrd: 2

17. Ingut: c5-13 Output: (n c5-t3)(s ba-12 d-l3) 5s1g; I  l ,rd: 2

l& tnput: d5-lrt Outguc (o d5-t,l)(s c5-13 d5-14) 5s13; | [,cvd: 2

19. hpur: c5-15 Ouput: (n c5-lSXs d5-la cs-lsxb e't-ll c5-15) Sote: u ['cvd: I

20. lnpur c5-15 orrtprr: (s d-0 c5-15) Strte: u l,ac.l: t
2t.  lnpuc c5-t6 Output: (o c5-t6)(se5-15 c5-15) Strte: u Levct: I

22. lDput fS-t? Oucpul: (a f3-t?Xsc5-t6 15-17) Sotc: I Lcrd: 2
23' lnPut: g5-lt Outpot: (a t5-t t)(s f5-17 g5-l t) Sqte: I L:rd: 2

21. loput: c5-19 Output: (n c5-19) Satc: u kvrN: 3
25. lnpot: f5-20 Output: (n f5-20) Sate: I Lcvel: 2
26. lnpor f5-20 Output: (b c5-15 g5-ltXsgS-lt f3-20) Sotc: I Lerd: 2

27. lapuc e3-2I Orrgut: (n d-21Xs f5-20 c5-2t) Strlc: I bvd: 2

2& toput: d5-22 Output: (n d5-22Xs c5-21 d5-22xb g5-lt d5-22) Stutc: u Levd: I

29. lryut: d5-22 Oltput: (s c5-l5 d5-22) Sale: I lrrcl: 2
30. lnFrt: c5-23 Ouput: (o c5-23)(s d5-22 d-23) Stete: ! l-crd: 2

31. lnPut: d5-2{ Output: (b c5-15 c5-23)(n d5-2{Xs d-23 d5-2d) Sate: I lrrcl: 2

32. lnput: d5-25 output: (n d5-25)(sd5-2' d5-251 Sr:te: I  l 'evel:2

33. lnput: e5-25 Output: (n c5-25Xs d5-25 c3-26f(lp c5-23 e5-26) Sere: u ['everl: I

34. lnput: e5-26 Ourput: (s c5-t6 c5-26) Sare: u kvel: I
35. lnpuc 14-27 Ourput: (r 14-27) Sate: u Lrvcl:2
35, Inpuc d5-2t Ortput: (n d5-2t) Strtc: u l*rd: I
37" laput: d5-2t Ourpc (s c3-25 d5-2t) Sotc: I l.,crd: I
3t. lrput d-29 Ouqut: (n c3-l9Xs d5-2t c5-29) Sote: I lrrd: I

39. Input: ba-30 Ottpuc (n ba-30)(s c5-29 b{-30) Sete: I lrrcl: t

ao. lrFrc r4-3t Ouquc (ar4-3t)(sb't-30 ra-3tXb c5-2614-31) Stete: u l'erel:0
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CITOR,ALE NO, 22

0. bsc - Qljpqs (n c5-0) Stltc: r l.*rd: t
l. hpuc cS-l Ortput: (n c5-t)(s c5{ cS-l) Strtc: u Lerd: I

2, loput: g3-2 Ottpst: (n g5-2) Sate: u l*td- 2
3. hpuc c5-3 Ourprt: (o c5-3) Strts u Lcrd:3
l. fpnc f5-4 orrtPut: (r f5{Xs c5-3 fs-aXb c5'3 t3-a) Stetc: o l*td:.2

5. Ingut: f5-l Output: (s g3-2 fs-l) Sete: I Levd: 2
5. bput: c3-5 Outpuc (a c5-5)(s f3-'l e5-5) Sotc: I l-crei: 2

?. l4ut: d5-6 Output: (o d5-5Xs c3-5 d5-6) Srrrc: I Lcvd: 2

a hput: d5-7 Output: (o d5-?Xs d5-6 d5-?Xlp E5-2 n5-7) Stete: u Lcrel: I

9. l4ut: d5-? Ourprc (s cS-t d5-7) Sote: I l,crd: 2
10. lngut: c5-t Ottput: (n d-tXs d5-7 cS-t) Setc: I lrrd: 2

I t, hput: c5-9 Outpuc (! cS-l c5-tXo d-9) Strtc: u Levcl: I

12. lryur: c5-9 Ourpuc (s c5-t c3-9) Sare: u l,c;d: I
13. lryst: f35-t0 Ou.Puc (n ffs-l0Xs c5-9 fts-10) Srte: I Lsd: 2

I l. lrpuc g5-l I Output: (n g5-l t Xs ff5- | 0 85-l t ) 53119; I Lvel: 2

t3. lnput: d-t2 Output: (nr5-t2Xsg5-l l  r5-f 2) Sele: I  l -crel:  2

16. lnput: g5-13 Output: (b e5-9 r5-12)(n g5-l3Xsr5-t2 85-t3) Strte: I  Lerd: 2

t7. lnguc f35-14 Ouqut: (o f35-l4Xs g5-13 f;3'14) Strre: I  bvel:  2

t& lnput: e5-15 Output: (o c3-15)(sfss-la c5-t5XD r5-12 c5-15) Strte: I l-erd: I

t9. LrFrt: c5-t3 Orrput: (s c5-9 e5-15) Sotc: u l.acl: I

20. lnpur: b4- | 5 Ortpuc (o ba- t 6) Sate: u l-ctd:- 2
2t. hput: cs-l? Orrput: (n d-l7Xs b4-15 c5-17) Sorc: I Lcrcl: 2

22. lnput: c5-l t  Ouput: (nc5-lE)(sc5-t7 d-tt)  Sute: I  l 'erd:2

23. IaPut: d5-19 Output: (n dS-l9Xs c5-lt d5-19) Sotc: I l'cvel: 2

A.l!{lut d5-20 Output: (o d5-20Xs d5-19 d5-20) Sote: I Levd: 2

25. lnput: e5-21 Ouput: (n c5-21)(s A5-20 c5-2lXF b4-15 e5-21) Sere u Lad: t

25. lnprt: c5-21 Output: (s e5-I5 c5-21) Sutc: u Lercl: I

2?. lnput: c5-22 Ourput: (o d-22Xs c5-21 c3-22\ Satc: n l'crd: I

2& Input: c5-23 Ouqut: (n c5-23) Sote: u l.ctd:2
29. Infrt: r{-24 Output: (n e4-21) Strle: u Lrld:.2
30. Ioc{t: b{-25 Ouput: (n M-25)(s r{-24 b1-23) Sate: I kvcl: 2

f l. tapur: c5-26 Output: (n c5-26)(s b4-25 d-16) Sate: I kvel: 2

32- lnPut: d5-27 Oupur: (o d5-27)(s c5-26 d5-27)(lp 14-24 it5'27) Stete: u bvd: I

33. lnput: d5-27 Output: (s e5-22 d5-27) Sete: I Lrvel: I
3rl. logut: c5-2t Outpur: (n c5-2EXs d5-2? d-2E) Sate: I kvet: I

35" lnput: b{-29 Output: (n brl-29Xs c5-2t b4-29) Sate: I l-cvel: I

36 lmrc il-30 Outp'ut: (n ra-30Xs M-29 la-30)(b c5-22 14'30) Sote: I L:rd: 0
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CHORALE NO. 2t

0. hprt - Qsipss (o c5-0) Sqtc: r [.erd: |'
l. lnput t4-t Orltput: (a r,l-t) Sate: u lael:2
2. Inpst: ra-2 Outrut: (n ra-2xs ra-l r4-2) Strte: u Levc.l: 2
3. lbFrc bl-3 Ourpc (a b,l-3Xs il-2 M-3) Sotq I l*td: 2
l. Input: c5-{ OutFlc (o d-aXs b4-3 d-4) Sotc: I L,crd: 2
3. Ioput: d5-5 Otqrc (n d5-5Xs d-a d5-5) Sotc: I l,cvd: 2
5. lngut: e5-5 Output: (n e5-6)(s d5-5 .5-5XlP ra-2 e5-5) Sate: o l,erd: t
7. hpuc c5-5 orttFrc (s c54 c5-6) Sqrc: u I'c'dz I
& lnput: c5-7 Output: (r c5-7)(s d-5 c5-7) Sorc: u Lzrd: I
9. Input: cs-t Outpuc (n es-tXs e5-? cs-t) Sotc: u Lcvel: I
10. Inpur: d5-9 Output: (o d5-9)(se5-t d5-9) Sote: I Lrrcl: 2
t t, lrnrc c5-t0 Ourpur: (r d-lOXs d5-9 c5-10) Sete: I Level: 2
t2' InFrt: d5-tl Outpuc (o dS-l l)(s d-10 ds-ll) Setc: I Lcvd: 3
13. lrput: M-!2 Outpuc (b cs-t0 d5-l lXn b4-12) Sotc: I l',ercN: 2
tf. lngut: b{-t2 Outprr: (sc5-10 b4-12) Strt€: ll,'d[2
15. tnFrr: b4-13 orrryor: (n M-l3Xs M-!2 M-13) Sorc: I L:vcl: 2
15. lngur: c5-t4 Outprlt ($ c5-t ba-13)(n cS-taXs b,l-I3 d-|4) Strte: I lael: 2
17. tnpur: d$.15 Outgrr: (n d5-t5)(s cS-la d5-t5) Stetc:'l l,cvel: 2
I t. lnput: c3-t 5 Ouryur: (n c5-t 5)(s d5-t5 es-l6Xb b{-13 c5-16) Stetc: u brel: I

t9. Input: c5-15 Outprt: (s cS-t c3-15) Sore: u l2vd: I
20. Input: c5-17 Outprt: (n c3-17)(s c5-16 c5-17) Sote: u Lerel: I
21. Iaput: dS-l t Outprc (n dS-t tXs es-t? d5-t t) Sore: I Lacl: 2
22. lnput: c5- l9 Ourprt: (b c5- I ? d5- t t)(D c5-t9Xs d5-l t e5-19)(b d5- l t G5-r9) Sare: u Lerel: I

23. lngur: c5-19 Ourprt: (s e5-t7 c5-19) Sete: u [.erd: I
21. lnput: e5-20 Ouput: (o e5-20)(s es-t9 c5-20) Satc: tr Lcrd: I
25. lnput: c5-2 I Outpgt: (n c5-2 1 ) Strtc: u lztd: 2
2C lnput: d5-22 Ortpr: (a d5-22Xs d-zt dS-271Sanc: I Lac!: 2
27. lnpul: c5-23 Output: (n c5-23)(s d5-22 c5-23)(lP c5-2t c5-23) Soic: u Lerd: I
2& lnpur: c5-23 Ourpur: (s c5-20 c5-23) Strtc: u l,crd: I
29. IrVut: c5-24 Ourput: (n e5-2d)(s c5-23 c5'24\ Sete: u kvd: I
30. lngr.rt: d5-25 Output: (n d5-25)(s c5-24 d5-25) Sote: | [rrd: 2
3t. lnput: c5-26 Outpnt: (n c5-26)(s d5-25 d-26) Sare: I Level: 2
32. lnput: e5-27 Ourput: ([ e5-2,1 d-26Xn c5-27) State: u Level: I
33. lnput: c5-27 Ouguc (s €3-24 e5-27) Scte: u L,cvel: I
3f. lngrt: g5-2E Ouqnrr (n g5-2E) Sete: u l*tclt 2
35. laguc c5-29 Ourptt: (n e5-29) Sotc: r lrvdl t
36. InFrt: c5-29 Outpor: (sc5-27 c5-29) Sorc: c lrtd: t
37. lquc c5-30 (}rrtprc (r c5-30)(r c5-29 c5-30) Sotc: u l.crd: I
3& lnput: c5-3t Ouquc (r c5-31)(s e5-30 G5-31) Strtc: u Lcrd: I
39. lapuc d5-32 Outprc (o d5-32)(s e5-3t d5-31) Sotc: I Lcrd: I
a0. lDpuc d5-33 Ouquc (n d5-33Xs d5-32 d5-3t) Satc: I Lcrel: 2
ll. lnput: d5-34 OutFrt: (n d5-34)(s d5-33 d5-31) Snte: | [rvd: Z
rl2. lnput: c5-35 Ourput: (b e5-31 d5-31)(o c3-35Xsd5-34 c5-35xb d5-3,1 c5-35) Sote: u Lcrel: I
13. Inpt: c5-35 OutFrc (s c5-3t 15-35) Sotc: ! La{N: I
a{. tlprrt: d5-35 Output: (o d5-36Xs c5-35 d5-36) Satc: I Lerd: I
15. lnput: c5-3? Outprt: (a c5-37Xs d5-35 c5-3?) Sotc: I kvd: I
16, lnput: d5-3t OutPut: (o d5-3t)(s d-37 d5-3t) S.et€: I l2td: 2
17. Input: b4-39 Oucprt: (h c5-37 d5-3tXn b4-39) Sate: I l,crrN: I
l& lnput: b4-39 Output: (s c5-37 b1-39) Satc: I krd: I
19. lnput: r4{0 OutPo.: (!.{-a0xs M-39 ea-a0Xb e5-35 r{-40) Sote: u Lcrel: O

209



l lo.  57

2322211222212222
uu l l luu t t t tu l l t l

5.  .10.  .15.

l t t0
l l lu
.  20.

2to



cHoRALx NO.57

0. lnput: - Ouest' (r c5-0) Sotc: u l,crd: t
l. fr$rt; el-l Ouqut: (n ta-l ) Sate: u l.ctd: 2
2. loFc d-2 Otput: (o c5-2) Scte: u L.r'rGL 3
3. lnput: brl-3 Outprc (n M-3Xs c5-2 b4-3XlP cs-t M-3) Strtc u l.ztd:2
l. lnFrt: b{-3 Outpuc (s r4-l b4-3) Sotc: | [,crcl; 2
5. brflrc d-l Output: (a d-a)(s b4-3 d-{) Salo: I L:vcl: 2
6. Inpgt: d5-5 Ourput: (n d5-5Xs c5-,1 d5-5) Sretc: I l,cvd: 2
?. lnput: c5-5 Output: (n c5-6)(s d5-5 d-6Xb r4-l c5-6) Sote: u l,erd: I
I lnput: c5-5 Outpuc (se5-{l c5-6) Sots u Lcvd: I
9. lnPut: c5-7 Output: (n c5-7Xs c5-6 c5-7) Sorc: u l,crel: I
10. lngut: dS-t Output: (n dS-t)(s c5-7 dS-t) Sote: I Lerel: 2
I l. tngut: d-9 Output: (n d-9)(s d5-6 c5-9) Sete: I Lcvelr 2
t2. Inpur: b4-10 Output: (n b4-10)(s d-9 b{-10) Srerc: I Lcvd: 2
13. lnput: b.-l I Output (n b.l-l t )(s ba-10 ba-l I ) Strtc: I Lerd: 2
14. lnpur: c5- t 2 Ottput: 0p c5-7 b4- t t Xn c5-12) Sotc: u l,crd: t
15. tnpt eS-I2 Output: (sc5-7 c5-12) Stete: u [,crd: I
15. lnput: d5-t3 Outprt: (n d5-t3Xs c5-12 d5-13) Stere: I l-crd: 2
17. lnpur: d5-14 Output: (n d5-14)(s d5-13 ds-l{) Sete: I l,cvel: 2
l& lnput: d-I5 Ougur: (o d-l5Xs d.<-la d-t5) Sale: I  Lerd: 2
19. lnput: b4-t6 Output: (n b4-l6Xs d-15 b'l-t6) Sate: I LerreN: 2
20. lnPu.: c5-l ? output: (b €5-t2 ba-I6)(n d-17)(s M-l6 cs-l?) sote: I l-erd: 2
21. trrpuc dS-tt Output: (n d5-lt)(scS-t? ds-ltxb b4-15 d5-lt) Sote u l,erc!: I
22. lopot: d5-lt Outpur: (s c5-12 dS-It) Srete: I l,cvd: I
23. Irput: d-t9 Ouqur: (n c5-l9XsdS-lt c5-19) Stete: I l-erd: I
2a. lnput: b4-20 Outpuc (o M-20Xs d-t9 b4-20) Strre: I Lctcl: t
25. tnpuc b{-21 Output: (n ba-21)(s ba-20 b4-2t) Setc: I Level: I
25. tnFr: ra-22 OutFrc (n ra-22Xs ba-2 | r4-22)(b e3'12 t4-221Stetc u L:rd: 0
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CHORALE NO. 
'7t

0. loprc - Ouour: (n cS-{l) Sorc: I l..end: t
l. Iryut: r{-t Ourput: (a r,l-l) Scrc: u Lctcl:2
2. lnput: r,l-2 Ouguc (o e4-2Xs r{-t r4-2) SGrte u lrctd:2
3. Lpuc r4-3 Ourplc (a rf-3Xs r{-2 il-3) Sore: u Lcrct 2
l. lnpur: t3a-a Outrurr (l g34-aXs r{-3 gc4-{) Strrc: I L,cvd: 3
5. Inpuc f84-5 orrtpur: (n f*a-SXs g*l-a tg4-S) Sorc: I Lrrel: 3
5, Input: ca-6 Orrrpuc (n ea-5)(s fta-S c4-6) SAtc: t t crd: 3
7. lnput: r4-7 Ougur: (D r4-3 c4-dXo r4-7) SOtc: u l,ctd:2
t. fnput: r{-7 Ourpuc (s e{-3 e4-7) Strre: u lrr,lvd:2
9. lngut: M-t Ouput: (a M-t)(srrl-? b4-t) Strte: ll*td:2
t0. Input: d-9 Output: (r d-9Xs b{-t cS-9) Sore: I t-cvel: 2
I l lnput; c5-10 Outpor: (o c5-lOXs cS-9 cS-10) Srrte: I Lcrd: 2
12. lnput: dS-t I orrtprt: {o d5-t I )(s c3-t0 d5-t t Xb ra_7 ds-t t ) Strre: u l,evd: I
13. lnprt: dS-l t Ouguc (s cS-0 d5-l | ) Sotc: | [.erd: 2
ll. l.apur: c5-12 Ouput: (n c5-t2)(s d5-t t c3_tt) Strre t l,ereN: 2
I5. lnpur: b4-t3 Output: (a ba-13)(s c5-ll b{_13) Strre: t l,evet: 2
16, tpur: b4-la Ourpur: (n b.t-l,l)(s M-t3 M-t.t) Sure: I l,cvel: 2
t7. lnput: c5-15 Ougur: (S e5-0 ba-lraXn c-5-t j)(s b{_t4 c5-15) Sore: I l-erd: 2
It. lngut: d5-16 Orqut: (o d5-l6Xs d_tS d5_t6) Serre: I lrvd: 2
19. l"n * c5-17 olrrpr: (o cs-t?)(s ds-t6 cs_l?ie b4-ta .s_t7) Sorc: u Lcret: r
20. Inpoc e5-17 Ourprr: (s a5-0 e5-17) Strte: u [rrd: I
2I. lnput: d5-|E OutFrt: (r d5-tt)(s c5-t? d5-lt) Sarc: t Laet:2
22. lnpt: d-!9 Ougur: (o cj-t9)(s dS-t t cS-19) Sare: t Lerd: l
23. Inpuc f5-20 Output: (b cS-|7 cS-t9)(n f5-20) Sare: u Lcvd: I
2{. lnpur: f5-20 Ougur: (s c5-17 fj-20) Sate: t lrad:2
25. lnpur: t5-2 t Ourpur: (o fS-2 t )(s f5_20 f5_2 I ) Sore: t Lad: 2
25. lnput: c5-22 Orrpot: (o c5-22)(s fS-21 aS-Z2l Sorc: t t erd: 3
27. Inpoc d5-23 Outprr (a dS-23Xsc-5-22 dS-23) Strrc: t Lerd:3
2& lnguc c5-2{ Ou4ur: (b f5-21 d5-13)(n c5_2{Xs d5_23 c5-2aXlp dS_23 as_2a) Sarc: t l,cvd: 229. Inpr: e5-2C Ouqut: (b c5- t 7 tS-2 | Xs fS_2 I c5_2d) Stere: t t eiet: I
30. lnpur: d5-25 ouqut: (r d5-25Xs cs-2{ d5-25)(h fs-2 r d5-2s) stere: s r.ae!: r31. lnpur: d5-25 Orrput: (s e S- I ? d5-25) Sere: I l.ad: Z
32. lnput: c5-26 Oogut: (a c5-25Xs d5-25 cS_26) SEre: I kr€l: 2
33. lnput: d-27 Output: (n c5-27)(s c5-25 c5-2?) Sr.re: I k el: 2
34. Iogut: b4-2E Ouput: (o b4-2EXs d-27 M-26) Strre: t kvel: 2
35. lapur e4-29 Outptrn (r ea-29)(s M-25 il-291Sore: I lrrd: 2
36. lagut: ga-30 OurFrr: (r 3rt-30)(s rt-29 3r-30i Srrrc: I Lcrd: 2
37. lnnrc cl-31 Orl?puc (r ca-31) Sotc: s t-na,'f
3& IDFIG f{-32 Grtprr: (o frt-32)(s at-31 fa_32) Sorc: I Lerol: 3
39. Inprc a4-33 Ourput: (o ga-33Xs fa-32 3{-33} Sarc: I l_crd: 3
10. lnput; g4-34 Or.put: (r g4,34)(s g4-33 g{-3a} Sote: t l,crel: 3
I l. lnput: r{-35 OurFr.: (o r4-35Xs t4,3a ea-35)(b er,_3 | r4-l5) Sqrc: I Lerd: l
12. lnput: 14-35 Ortp,ut: (s 94-30 14-35) Satc: I lr,crcl: 3
43, IDpuc 94-35 Ougrr: ($ ga-30 rd-35)(a g{-36)(s r{_3S g4_36) Sorer t L,crd: 3
f{. lnput: f4-37 OutFrt: (a frl-37)(s 9{-361141)(tp il-35 I4_3:-) Srere: I l,cret: 215. lngut: ta-37 OurFrr: (sga-30 f{-37) Sore: I t.ere* 2
15. Inprt: e4-3t olr.pua: (o c4-3EXs fil-37 €4-3S) Strre: I l,cvd: 2
{7. lrput: e5-39 Outpur: (b cS-17 c,a-36)(o c5-39) Strre: u krcl: I
It. lnput: c5-39 Ouqut: (s c5-17 eS-39) Stere: u Lcrel: I
19. lnpuc d5-40 Outprt: (n d5-40)(s cS-39 d5-d0) Strre: | [.erel: I
50. lnput: c5-.{ I Outpr: (o c5-{ t )(s d3-,t0 cS_{ | ) Sere: I Lerd: I
51, lnput: M-{2 Outpur: (o b{-,a2)(s cS-{l b4-42) Sore: I krd: I
52. lryur: r4-r3 ortprr (! ra{t3)(s M-{2 r{-a3xb e5-39 r4-rl3) sore u Lerd: 0
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CHORALE NO.392

0. lnguc - (beun (r t5-{t) Sotc: r l*td: I
l. Input: d-l Outpun (n d-l) Sotc: n letd:2
2. lnput: g5-2 Ortpuc (r gS-2) Srrrc: I l*rd: t
3. lopuc g5-2 OurFrc (s gS-0 35-2) Scrs u lrrd: I
l. foput: c5-3 Outpuc (o d-3) Strrc: r l-ctcl:2
a bFrt d-{ Ouql: (n cS-l) Satc: r l'ctd:2
6. lrguc a5-3 Orrguc (n g5-S) Strre: u Lcrd: I
7. fuuc g5-5 Ourprc (s g5-2 g3-5) Strrc: u Lcvd: t
L l4ut: 15-6 Outpuc (a r5-6Xs t5-j r5-f ) Satc: ll.ctd;2
9. bpur: r5-7 Olrnrc (n r5-7Xs r5-5 rS-?) Sore: I bret: 2
t0. lagut: gS-t Outp.c (lp g5-5 d-7)(o g5-t)(s rS-7 ss-sxb 8S-7 g5-S) State: u Lcrel: I
I l. lnpur g5-t Ouquc (s g5-S gS-t) Sere: u Laet: I
12. lnput: g5-9 Ortput: (o g5-9)(s gj-g gS-9) Sare u krcl: I
13. lnput: r5-l0 Ourprt: (r e5-t OXs g5-9 r5-t0) Sare: I Lerd: 2
l{. lnpur: b5-l I Output: (o b5-l I )(s r5-t0 bs-I | ) Scrrc: I Lcrc} 2
t5. Inpur: c6-l2 o|rtprt: (r c6.12)(s b5-t I c6.It) Sote: t [.rrd: 2
f 5. lnput: b5-t3 Ouput: (h eS-9 c5-12)(o b5-l lXs cGt2 b5-t3) Sote: l l ,ad:2
17. lr |Pur: 15-t{ Ourput: (o r5-14)(s b5-t3 d-la) Sare: I  Lcvet: 2
l& lnpur: 15-15 Ourpur: (n e5-l5XseS_la 15-lj) Stere: I lzvr{: 2
19. lnpsr: 95-15 Outpur: (n g5-lG)(s15-15 g5-l6xlp cG12 g5_lf) Strre: s Levd: t
20. Input: g5-15 Outpuc (s gg-9 g5-t6) Srrac: o l,crC: t
2t. lnpur: c5-17 Output: (a a5-l?) S(arc u L.rcNt 2
22. lnFrt: r5- t t Ouqrr: (o r5- | t) Sorc: u Lcrd: I
23. lnpuc r5- I 6 Ourprt: (s gS- I 6 rS- I t) Sarc: I Lerc* l
2{. Inpnt: 95-t9 Ourprt: @ 95- t 5 r5-t tXn g5-19)(s rS_t t 95-19) Sote: I Letd: 2
25. Inpuc f5-20 Ouqur: (o f5-20)(s g5-t9 f5-20)(b |.l'-lE f5-20) Sate: u Lcvcl: I
26. lnput: t5-20 Ouq,ur: (s 85-l O f5-20) Srrte: I l*rd: 2
27. InFrr: c-5-2 | Ourprt: (o rS-2 t )(s tS-20 cS-2I ) Sorc: t Lerd: 2
2t" Input: dt22 Oueor: (o d5-22Xs e5-2t dS-22) Sorc: I Levd: 2
29. lnput: d-23 Ourpc (o c5-23)(s d5-22 cS-23) Strrc: I t.eveJ: 2
30. lryut: 95-24 Outprr: (b 85-16 c5-23Xn g3-2a) Sorc: u Lcvd: t
31. lnpur: g5-2{ Ouqur: (s g5-16 g5-2{) Sore: u l.evd: t
32. lnpur: e5-25 Ourpur: (n e5-2S) Stere: u l-ercl:2
33. lnpur: 95-25 Ouput: (n g5-26) Sate: u Lcrel: 3
3{. Irput: e5-27 Outpur: (n e5-27) Stere: u l_ad:4
35. lnpur: f5-2t Ougut: (n f5-2EXs c5-27 fs-2Sxb cS-27 IS-2gl Sere: u l,eret: 3
36. lnput: f5-2E Ouqrr: (s 95-26 f5-2t) Scrc: | [rrd: 3
37" lnArt: c5-29 Ouguc (o c5-29)(s f5-2t e5-Zgl Sorc: t l,ereN: 3
3& lryuc d5-30 ()rrrpuc (a d5-30Xs c5-29 dS-3Of(D 83-26 d5_30) Sare: I l*td:2
39. laflil: d5-30 Ouquc (s c5-25 d5-30) Serc: f l,erj: 3
f0. hFrr: c5-3t Ourput: (| c5-25 d5-30Xr c5_3lXsdS-30 e5_3t) Sotc: I t.ac{: 3
f t. lnput: t5-32 OurFr (n f5-32)(sc5-3t f5-32xb dS-30 t5_32) Strre: u lad:2
12. lnFrt f5-32 Output: (s c5-2S t5-32)(tp .S-2S if5-32) Sare: u lrrel: I
f3. lnput: f5-32 Outprr: (sg5-2{ f5-32) Sore: ll*td:2
14. Inpst: a5-33 Ortput: (o e5-33Xs fS-32 cj-33) Sote: I krc{: 2
15. laput: d5-34 Outprt: (n d5-3rlXs 

"5-33 
d5_3.a) Sarc: I Lcrel: 2

15. lnpur: .5-35 OurFrt: (b g5-2a d5-34)(n eS_35Xs d5_3a eS-35) Sare: t Lrrel: 2
17. lnput: f5-36 Outpuc (n f5-35Xs cS-3S f5-36)(tp d5-3,t f5-36) Scrre: u [,crd: I
It. Ingur: f5-36 Ourput: (s g5-2{ fS-36) Sratc: I l,:vel: I
19. lnput: c5-37 Ouqrr: (n e5-37Xs fS-35 c5-37) Srere: I kvd: I
50. laput: d5-3t Ougut: (o ds-3tXs c5-37 d5-3t) Scete: t krd: t
51. lryuc c5-39 Ortpuc (n c5-39)(s d5-3t cS-39Xb g5-2a cS-39) Sote: u L,evd: 0
52. Irgrt: c6-{0 OurFc Strre: u Lcrc!: I
53. lnput: bS-l I Ourput: (n b5-41)(s cG{0 bS{ t ) Sare: I krd:
5{. Ingut: r5-{2 Ourpur: (n d-a2)(s bS-{l rS-{2) Sate: I Lcrel:
55. lnput: g5-{3 Outprt: (r g5-{3)(s rS-{2 g5-.t3) Sote: t [,crd:
56. lnCut: f5-{{ Ouqur: (o f5-4aXs g5<3 fS-44) Strre: I l,cve.t:
57. laput; c5-.15 Ourput: (n e5-{5)(s f5-a{ c5-{S) Stete: I Lcrel:
3E. Inprt: d5-{5 Ourp'ut: (a d5-{6)(s cS-{S d5-a6) Stete: | [,eret:
59. lnput: c5-.47 Output: (a c5-{7)(s dS-{6 c5-{7XF c5-{0 c5_J7) Srere: u l-eveJ: 0
50. brpur: d-17 Outpot: (s cS-39 c5-{7) Serc: u Lerd:0
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CHORALENO.7T

0. hgrr: - Ouqur (n cS-0) Sotc: u [.crd: I
l. bpuc c5-l Ouqur: (o c5-l)(s cj-O c5-l) Sorc: u Lcrd: t
2. lryut: c5-2 Ouguc (n c5-2) Sorc: c l.ctd:2
3. bpun d5-3 Output: (n d5-3Xs cS-2 dS-3) Srrte I l,acl: 2
l. hpur: cS-{ Ourpsr: (n c5-axs dS-3 cs{Xb cg-2 c5_l) Sore: u Lcrd: I3. hFr: c5-{ orrtprr: (s c5-t cs*l) Sorc: || krd: t
6. l+lrr: g5-5 Ourput: (a gS-5) Scrre I l-ad:.2
7. lqFc f5-6 Output: (n fS-d)(s g5-S f5-6) Sars I lrctd: 2
& lnFrt: f5-7 Ou4,uc (o f5-7xs fS-5 f5-7) Satc: I t cvd: 2
9. Lrpuc cs-t Ourput: (n cs-tXsfS-7 cS-S)(h 8S_S c5_t) Srerc: I l,crd: I
10. bgurr cS-t Ougut: (s c5-4 cS-t) Srerc: u Lerd: I
I l. bpuc g5-9 Outpuc (a gS-9) Srrrc: o |.ctd:7
12. l+ut: t5-t0 &rpuc (o f5-t0)(s gj-9 f5-t0) Sarc: t Lerd: 2
13. lpuc cS-l I Ourpur: (n c5-l I Xs f5-10 c5_t t) Sretc: t Lerd: 3
14. bput: d5-t2 Ourput: (n dj-t2Xs cS-l t dS_t2) Strre: I |.erd: 3
15. bput: d5-13 Ortpur: (n d5-13)(s d5-t2 dS_I3) Sqte: t t-eret: 3
!! .  tsrrt  €5-14 orreur; (h fS-t0 ds-t3)(a c5_t4)(s d5_t3 cS_l{)(b d5-t3 cS_l,t)  Sote: |  [ ,evd: 2
!?. !p.r,t .5-ta Ourpuc (s f5-t0 eS-ti)(g g5-9 cS-tt) Sarc: u l_evrN: I
l& hFrr: c5-l{ Outpur: (s c5-t c5_t{) Sarc: u l,erd: I
19. lryur: d5-13 Output: (n d5-t5)(s e5-ta dS-It) Sctc: I Lerd: 2
J0. bFr: d5-t6 Orrqur: (r d5-l6Xs d5-tS d5-I6) Sotc: t trvel: :
21. bnrr: d5-17 Ougur: (n ds-l7Xs d5-16 ds_t?) SEte: | [2r€t: 2
22. bprtt: c5-lt Outpur: (b eS-la d5-l7Xn c5-lt)(sds-t7 c5_ltXD d5_f7 cs-lt) S|rte u l-crd: I23. lqrt: es-lt Outpur: (s cs-ta c5-tt) Sr.r€: u bvel: I
24. hFrc d5-19 orrtput: (n d5-t9)(s e5-tt ds-t9) Sotc: t [.erd:2
23- l+trt: c5-20 Ourprr: (n c5-20)(s d5-t9 c5_20i Sorc: I l_crd: I
25. bpur d5-2 I Ourp,gr: (o d5-2 | Xs cS-20 dS-21) Stetc: t kvd: 3
27. bgtt: M-22 Ouesr: (b cS-20 d5-2t Xn ba_22) Sore: I l_erd: 2
2& Lrpnt: b{-22 Ougur: (s d-20 M-22) Strre: ll:tl'd:2
29. tpur: b4-23 Ourpur: (n b{-23)(s ba_ 22 b4-231 Sa.e: t lrr€t: 2
3.0. Iryut: c5-2{ Output: (h €S-l E b{-23)(o c5-2{)(s b{_23 c5_2a) Stete: t Lerd: 231. l+rt: d5-25 Ouqut: (n d5-25)(s cS-24 d5-25) Scere: t Lcvd: 2
32. hput: c5-25 output: (n e5-26)(s d5-2s c5-26)0p b4_23 cS_25) Setc: u Lae.t: t33. lput: e5-2 6 Ourp.rr: (s eS- t t c5-2 5) Sere: u lrvel: t
3{. lryqr: d5-27 Ouguc (n d5-27)(s c5-26 di-2j) Sai.: t Ir"eI: 2
11- F,, c5-2t Orpot: (b cS-26 d5-t7)(n c5-2t)(s d5_27 cs-lt) Sore I l,crd: l
l!. l+,r" f5-29 Ourpuc (a f5-t9Xs c5-2S f5-29xtp dF,-27 IS-29) Sore I frrJ, f37. Iryuc f3-29 Oue,uc (s e5-26 f5-19) Sare t kra: Z
1!. F,' c5-30 Ouguc (b cS-26 f5_29Xn c5_10)(s fS_29 cS-30) Sarc: tlctdz 239. lryut: d5-3 t o|rtPut: (n dS-31 Xs c5-30 d5_3 t )(p fs-29 d5_3 t ) Strre : u l,evrN: t10. bFrt: d5-31 Outpur: (s e5-26 dS-3t) Strtc: I l,cvel I
al. l+uc c5-32 Outpur: (n c5-32)(s dS-31 c5-32)(b c5_26 c5_32) Sctc: u l,crd: 0
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o{oRALE NO.312

0. lryuc - Qlps1; (o g3-{t) Strrc: u trrd: t
t. lnput: gs-t Ourpur: (n gS-l)(s g5-t) g5-l) Scrc: o [rrd:
2. Iaput:95-2 Outprt: (o g5-2xs e5-t g5-2) Sorc: u Lerd:
3. lryot: g5-3 Oupuc (n g5-3xs S5-: g5-3) Sorc: u Lcrcl:
l. Inpt: g5-{ Outpur: (n g5-4)(s g5-3 gS-{) Strrc: u Lerd:
5. lryrrc r5-5 OutFrc (o r5-5Xs g5-{ r5-5) Sterc: llsd:2
!. 9p"r' 95-6 Ouput: (b g5-1 r5-5)(n gS-5Xs r5-j g5-5xb r5-S 95-6) Sretc: o tcrd: I
7. lnFrr: g3-5 Ougut: (sg5-{ g5-5) Strre: u Lcret: I
& Lput: f5-7 Oupuc (n f5-7)(sgj-6 f5-7) Sarc: I l,etd:2
9. lnpur: c5-t Ouput: (n c5-tXsfS-7 c5-t) Srrte: t Lcvel: 2
10. lnput: d5-9 Ourput: (n d5-9Xs c5-t d5-9) Sore: t [rvd: 2
I l. lnpur: d5-t0 Ouguc (n d5-l0Xs d5-9 dS-10) Stere: I l,ercl: l
t2. InPtrt: d-l t Ourprt: (a d-l I Xs dS-10 cs-l I ) Srere: t l,crc* 2
13. hprt 35-12 Outpuc (b g5-6 c5-t l)(a g3-t1) Sotc: u l,erd: t
ld. lrqut: 95-12 Output: (s g5-5 g5-t2) Sate: u l,cyct: I
15. lnput: g5-13 Ou.pui: (o g5-13)(s g5-12 g5-13) Stlrc u l-erel: I
16. Input:85-l{ Ourpu.: (u 95-t, tXs95-13 gS-la) Strte: u bvel: t
17. lnput: 95-15 Outpur: (n g5-t5Xs gS-trt gS-t5) Scrte: u Lcret: I
I & lnput: r5-15 Ougut: (r r5-l5Xs gS-lS r5-t d) Sore: t Lcrd: 2
t 9. Input: f5- l 7 Ourprr: (o fS- t 7) Sote : u LcreJ: 3
20. lnpur: r5- I t Outprc (a ls- I !) Sare: I t,crc!: 2
21. lryut: r5-lt OrrtFrt: (sl5-l5r5-lt) Sore: I ll'.td:2
22. lnpuc r5-19 Ourpnc (or5-l9Xsr5-tSrS-lg) Satc: I l,erd: I
23. IaFr: bb5-20 Orrptrr (n bb5-20)(s d-19 bb3-20) Sere: I lrrd: 2
2{. Input: r5-2I Ouqut: (b C5-13 tt5-20)(n rj-2 | )(s bb5-20 l5_2 t ) Srete : I l..act z
25. lnput: 95-22 Orrp.t: (r g5-22XsrS-2t g5-2lXh bb5-20 95-22) Sare c Lcrd: t
26. Ingrt: g5-22 Ourpur: (s 33-tS gS-22) Sorc: o Lavd: t
27. lopt: 95-23 orrtplr: (n g3-23Xs gS-22 gS-Z3l Sorc: u Lcrd: t
2& lnpur: g5-2a OuiFrr: (n es-2axs g5-23 gS-211Soae: u l,cvd: I
29. lnput: 95-25 Ouput: (n g5-25Xs95-2a gS-ZS\ Sare: u Lerel: I
30. Input: 95-25 Outpart: (o g5-26Xs g5-2S g5-26) Srlre: u l,eryel: t
31. logut: c6-27 Outprr: (n cG27) Srare: u lzscl:2
32. lnput: g5-2t Ourput: (n g5-2E) Sare: o l,evelt t
33. Input: g5-2t Ouqrr: (s 93-26 g5-2E) Sore: u Lrvd: t
3{. lnput: 95-29 Ourg,uc (n g5-29)(sg5-2t95-291Sotc: u Levd: I
35. lnput: e5-30 Ouqr: (n d-30)(s 6-29 !S-30) Sorc: I l,erd: 2
35. lapuc d-31 Ou,Frn (n r5-3I )(s 15-30 r5-3I ) Srerc: I l*rrN: 2
37. lopur:33-32 Outpoc (b g5-29 rS-3t)(n gj-3t)(srS-31 tS-32) Sotc: I l,crd: l
3& laput: 95-33 Outprc (n g5-33Xs gS-32 gS-3J) Sorc: I l,crd: l
39. Innrc f5-3{ Output: (r f5-3{)(s 95-33 fs-3axb d-31 fS-36) Sere u LcreN: I
f 0. lnput f5-3{ Ortprt: (s 95-29 fS-3{) Sarc: I l,ctdz 2
ll. lopuc 95-35 Ourprt: ([ 35-29 f5-3aXn CS-3$X5f5-3{ g5-35)(h f5-3a gS_3S) Sorc: u l,cvct: I
12. Input: 95-35 Ourput: (s 95-29 95-35) Sare: u l,crd: t
13. ItrPur: 95-16 Output: (o g5-36Xs gj-35 g5-36) Sarc: u I_arN: I
ld. hput: 95-37 Ourput: (n g5-37)(s 95-35 g5-37) Sere: u Levd: I
f5. lnput: 95-36 Outprt: (u g5-3EXsg5-37 g5-3t) Srrtc: u LaeN: t
a5. lnput: 95-39 Ourput: (o g5-39)(s g5-3S gS-39) Srerc: u t.evd: t
rf7. Iqfur e5-{0 Output: (u c5-a0) Sratc: u lrlrel:2
aE. lrprrr: f5-{I Output: (n t5-{IXsci-{0 fS-{I)(tp eS-{0 fS-4t) Stetc: u terd: t
19. lngut: t5-{l OorFrr: (s95-39 f5-{l) Sore: I L,crd: I
30. lnpur: c5-42 Ourpur: (n c5-{2Xsf5{t e5-{2) Sore: I Level: I
51. lnp.rt: d5-43 Ou.puc (n d5-{3Xs e5-rl2 d5-{3) Sate: t Levd: I
32. Inpur: c5-44 Outprr: (o d-a,tXs d5-{3 cS-{4} Sarc: I l,creJ: I
53. loArt: d-{5 OurFrt: (n cS-{S)(s cS-ta cS-.aSXb g5-39 c5-{5) Sa.e: u Lcvcl: 0
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CHORALE NO. {E

0. hpur: - Qlquj; (a t5-0) Sorc: e Lcrd: t
l. toFrc d-t Outpur: (! d-l) Strrc: I Led:2
2. lnpuc c5-2 Orgut: (n c5-2) Srrre: u Lcvd: 3
3. hFrc d5-3 Ol|tPor: (o d5-!)(s cS-2 dS-3Xb c5-2 dS-3) Srue: I l*td:2
l. lnnr: d5-3 Output: (3 d-t 45-3) Sarc: t l,cvd: 2
5. lnpc c5-{ OurFrr: (n cs-{Xs dS-3 cS-4) Son. I l'ctd: 2
5. lnput: f5-5 Outprr: (n f3-5Xs c5-{ f3-5) Stetc I l,cncl: 2
7. lnput: 95-6 Orrpur: (n C5-6)(s fs-S g5-6xlp d-t gs-f) Sore: u Levd: I
& lnpuc g5-5 Ortpuc (s g54 g5-6) Sore u lrrd: t
9, trpuc e5-7 Ourput: (n c5-7) Satc: u |.ctdt 2
10. lnprt: rS-t Ougut: (a r5-!) Sorc: u Lrrd: I
I I. lnput: rS-t orrtpgt: (s 95-6 aJ-t) Sterc: I l,crd: 2
12. lnpur: g5-9 Ourpur: (F C5-6 rS-t)(n S5-9Xs r5-S gS-9) Srrre: I lrrd: 2
13. lnpur: f5-10 Output: (n f5-10)(sg5-9 tS-tOXbr5-t f5-t0) Strre: u L:rd: I
ll. Input: f5-t0 Outpur: (s 95-6 f5-t0) Strre: I Lael: l
I 5. lnFt: c3- I t Ourpur: (n c5-t I )(s f5-10 cs-l l ) Strtcr t l,crc& 3
t5. lnput: d5-12 Ourpur: (n d5-12)(s c-5-l t d5-ll) Sere: t l,cvd: 3
17. Lryor e5-t3 Output: (b f5-10 d5-l2Xo cS-lt)(s d5-12 c5-13)(b d5-12 e5-13) Sorc: I  lzrd: 2
I & lnpot: e5- | 3 Ouqur: (s f5- l0 c5- I 3) Sarc: I Lqdt 2
19. lnnrt: g5-la Ourpur: (b C5-6 c5-13)(n g5-t4) Strrc: o terd: I
20. InFrt: t5-ta Ourpuc (s g5-5 g5-ta) Srerc: u l.,erd: I
21. lrput:rS-t5 Ourput: (reS-lSXs95-l{ r5-t5) Strrc: t  Lrnd:2
22. Input: b5-16 OrrrFr: (n bS-t6Xs15-15 bS-!6) Serc: t Lerd:2
23. Input: cGlT Output: (n cGIT)(s b5-16 c6-17) Sore: I l,crd: 2
24. lnput: b5-l t  Ougut: ( lp 95-l{ c6-l7Xn b5-ltXsc5-t? bS-tt) Strre: I  l ,cvd:2
25. lnput: 15-t9 Output: (o r5-t9Xs b5-tS |']s-t9) Sote: I Lerd: 2
25. lryut: 95-20 orrrgut: (a 85-20)(srS-t9 gS-20Xb cGlT gS-20) Sarc: I l,crrd: l
27. lnpuc 95-20 Ourpuc (sg5-t{ t5-20) Sretc: u Lerd: I
2& lrput: c5-2 | Ourpur: (n c5-21 ) Sorc: o LcreN: !
29. In0nt: f5-22 Output: (n f5-22)(s cS-Z l f5-22xlp e'-2t tS_22) Sore u kvd: I
3O. lr|Put: f5-22 Ourput: (s95-20 f5-21) Sete: I L:rd: I
3I. Input: e5-23 Output: (n e5-23Xs f5-22 c5-231 Sore: t Level: t
32. Input: d5-24 Ourpur: (n d5-2aXs e5-23 d5-24) Sare: I Lerel: t
33. lnput: d5-25 Output: (n d5-23)(s d5-24 d5-25) Sare: t Lcrcl: t
34. lnput: c5-26 Ouguc (n c5-26Xs d5-25 c5-26)0p gS-20 c5-26) Stete : u kvd: 0
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APPENDD( B:

hoducdon nrleg con*dnts erd heuristics

of the CHORAL system

Tbe following production rules, constraints and beuristics reflect a rec€nt state of tbe knowledge base
of tbe CHORAL system, namely tbe version tha( produced all tbe barmonizations and descant ana-
lyses in appendix A, except tbe last four chorale barnonizations and analyses, whicb are earlier out-
puts. This appendix represents our best effort to fuUy describe Oe CHORAL knowledge base in
Englisb. ln order to provide even more detail, we are also willing to give a copy of our program to
interested researcben.

Since BSL does not bave tbe exact analogs of production nrles of a true production system sucb as
OPS5, the figure 350 for tbe number of rules in tbe cborale program was arrived at by counting the
paragrapbs it thi( Appendix that describe a production rule, consuaint or beuristic proper (they
amouDt to 354). Entries of tables tbat are interpreted by orber rules were not couDted. Similarly,
paragrapbs indicating more tban one ;nssible actioo for a given condition, or summarizing a set of
condition-action pairs, were counted as a single production rule. Tbe chorale program presently
consists of about 11700 lines of BSL code (knowledge bases, scbedulers, vie* translators) and about
2400 lines of C code (grapbics routines, melody preprocessor). The BSL compiler source code
presently consiss of about 3000 lines of VM/Lisp.

An ascii notation is used for tbe chorale soores in this Appendix, wbere tbe foUou'ing conventions
bave been adopted: "c4" is middle C, "br4" is tbe B a seventb above it, "c5" is tbe C an octave above
it- "bb4" is B flat, "f*4" is F sbarp. Notes spanning quarter beas are spaced wider than ootes
spanniag eightb beats. " I " denotes a barline, "(fr)" denotes a fermata A pair of sixteenth notes is
denoted as in "(c4 d4)." Notes that are continuations of tbe previous note in tbe same voice are in-
dicated as "." (for an eigbth noe long coDtinuation), or "-" (for a quarter note long continuation).
Tbe coordinates of tbe musical events of interest are marked by "1";" signs below aod on tbe right
of a score. In dubious c:6es, one can always refer to tbe original lTerry 6a].

I.I THE CHORD SKELETON \/IEW

t.l.l Explanation of fuoctions and predicates of tbe chord skeleton view

This view generates tbat part of the cborale which is its cbord skeleton. This view's coocept of tbe
cborale is a sequence of cbords witbout rbytbm, over some of whicb there is a fernata. Symbols in-
dicating barmonic significance are also written undemeath tbe chorG.

Tbe primitive pseudo functions for this view are given betow:

a is tbe sequenc€ numhr of tbe current cbor4 and ranges over 0,1,....
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P(n,v): pitcb_type

?'octave number+ pitcb name of voice v in chord n.

a(n,v): accidental type (flar 
- -1, natural, sbarp)

Tbe accidenral of voice v in cbord n.

fermata(n): integer

U non-zero, indicates that chord n bas a fermata over iq and is value specifies tbe oumber
of quarterbeats that tbe ferrnata bas to be beld. If zero, indicates tbat tbe cbord does not
bave a fermata over it

Tbe follou'ing additional functions are included in this view for convenience, although they are
inferrable from tbe above primidves.

root(n): pitchname_type (ut re,mi,fa,sol,la,si)
rootacc(n): accidental type

Tbe pitcb oame (in tbe mnge ut"re,...,si) and accidental of the root of tbe D'tb cbord.

position(n): (fundamental, first_inv, second_inv, third_inv)

Tbe position of cbord n.

avoices(n): (triadc-3,scventbc)

Tbe number of distinct pitcbes in tbe chord n. This can be tbree or four. As an implemen-
taiion restriction, whicb bas nothing to do witb Bach, we do not allow incomplete cbords
witb two distinct pitches, nor do we allow incomplete seventb cbords witb three distincr
pitcbes io tbe cbord skeleton level.

uniq5(n): boolean

True iff tbere is a unisson in cbord n

cbordtype(n): integer

Tbe type of tbe cbord n expressed as an integer (bit string), as indicated in tbe follou'ing
example: Assume tbat cbord n is a major triad in tbe fundamental position, u'itb arbitrary
doubling and arrangement. Sinc€ tbe fundamental position of tbe major triad bas inten'al
structure (0,4,7) (no. of semitones from the bass) tbe corresponding value of chordtype(n)
b 27 +2a (tbe bass -20- is not counted).

Tbe following functions indicate tbe barmonic significance of the current cbord. Before knou'ledge
about these barmonic properties was insened in the program, it bad a "Gregorian" style.

key(n): pitcb name
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Tbe key of tbe curreDt cbord. Tbe acceptable values are {uL, fa" sol, la, re, miJ, wbere ut,
fa, sol, are major keys, and la, re, mi are minsl !sy5. Note tbat the cborale is always
composed in C major or A minor, witb provisions made for transposition wben voiccs go
out of raoge.

deg(n): (stl, stII, stllp, stIII, stmd, stfv, stIV-7, stlVp, stv, stl6-4, stVI, stvll, stVIId,
stVd, stllu, stlVu)

Tbe degree of the current key rbat the current cbord represents.

Erplanation of individual degrees. Tbe term 'fungtion' in the commen6 is used in tbe sense
of tbe l,ouis-Tbuille harmonic theory [Louis and Tbuille 06].

stl: tonic

stl6 4: cadential I !

stII: second degree, serving as subdominant fuDclion

stllp: passing cbord, second degree sandu'iched between two occurrences of the dominant
degree

stIII: third degree, occurs in very restricred contexts. Dominant function in minql, lenis
function in major.

stfV: founb degree, serving as subdominant

stlVp: passing cbord, fourtb degree sandwicbed between two occurenccs of the dominant
degree.

stIV_7: fourtb degree of major key beariog a major scventb cbord

stVI: sixth degree

stV: dominant degree

stvlf: seveoth degree, dominant function

sfvu: founb degree in the ascending melodic minel 6eds, using tbe sbarpened sixtb of tbe
key

stllu: second degree in tbe ascending melodic minor mode, using tbe sbarpened sixtb of tbe
key

stVd: fiftb degree in tbe descending melodic minor mode, using tbe flattened seventb of tbe
key

srIIId: third degree of minor key with flatrcned filtb. Occurs only in modulation contexts.

stVIId: seventb degree of minor key u'ith flattened root. Occurs only in modulation con-
texts.

clicbe_id(n): integer
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clicbe_lninter(n): integer

Tbe cbord skeleton view treats cenain cbordal patrenr, called 'cUcbCs'specially. Wbeo
cliche_id(n) is not 'Dull'tben tbe n'tb cbord is tbe continuation (or start) of the panicular
clicb€ in the table of clicbCs, identified by clicbe_id(n): tbe n'tb chord matches tbe
clicbe;rointer(n)'th item of tbal, panicular clicbC. Wbeo c[che_id(n) is is equal to'null',
tben tbere is no clicb€ patterD in progress, and clicbe_poinrer(n) is irrelevant

force_supensiou(n,v): integer

This is rced for passing information to the fill-in view about tbe suspensions in voice v in
the coDtext of a clicb€, and forces cenain notes of voice v to be supended wben a clicbe

- is iD progress-

Tbe follou'ing pseudo functioru are a useful way to refer to ceftain properties of chords
0,...,n-1, witbout having to compute these properties from scratch eacb time they are
needed. Eacb view bas sucb pseudo functions, called tbe utilily ouributes.

maxDot€(D,v) : pitcb_type

The maximum among tbe pitches of voice v at cbords 0,...,n-1.

rninnels(3,Y): pitcb_type

flg minimgm among tbe pitcbes of voice v at chords 0,...,n-1.

phrasecount(n): integer

Tbe scquence number of tbe current phrase. First phrase- 1.

curtime(n): integer

Tbe number of quarterbeas elapsed since tbe beginning of tbe first me:Bure until cbord D.

last_higb_corner(n,v): pitcb_type

Tbe pitcb of tbe note tbat occurred as tbe last high comer in voice v, before cbord n. (A
higb corneris a local pitcb maximunt. Forexarnple, witbin c d e, the d is a higb corner.)

used_endings(n,v) : set of pitcb_type

Tbe set of tbe pitcbes that occurred as phrase endings in voice v before chord n, expressed
as a bit string.

last ending_root(n): pitchname_type

Tbe pitcb name (in the range ut,...,si) of the root of the chord tbat ended tbe last phrase
before cbord n.

dist(n): integer

Tbe number of quarterbeab left to reach tbe end of the current phrase.
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1.1.2 Geoeration of utility attributes

If n>0, tbe utility attribures of chord skeleton step D (such as curtime(n) ...) are compured from step
n-l in tbe predictable ways. U n-0 tbe utiliry attribures are set to predictable inirial values, wbose
details will not be discussed bere.

1.1.3 Generation of pitcbes aod accidentals of tbe steletal Dotcs of tbe bass, tenor, dto, aDd
sopraoo, as well as tbe fermatas.

l.l.3.l Geoeration of pirch aod accidental atrributes of tbe skeletal Dotes of tbe soprano, and tbe
fermaus

The properties for tbe skeletal notes of tbe soprano, and tbe fernatas, are copied directly from tbe
set of input :urays (obrained by a preprocessing of tbe given melody).

Comment: Tbe preprocessor is n'ritten in C, and is discussed furtber iD tbe fill-in view.

1.1.3.2 Generation of pitcbes of skeletat ootes of the bass, tcDor and alro

The pitcbes of rbe skeletal notes of the bass, tenor, and alto are chosen sucb tbat rbe four pitches of
tbe bass, tenor, alto and soprano constitul€ a chord parterD. Tbis is dooe by nondeterministically
cboosing a cbord pattern from a precompiled tabte of cbord patrerns. As the pitch of eacb voice in
a cbord is cbosen, a quick cbeck is made immediately to ensure tbat tbe voice is withil an absolute
range, and tbar it does not produce a melodic skip over aD octave.

Comment: Each cbord patterD in tbe precompiled table is an assignment of pitcbes to voices whicb
constitules a (complete) triad or seventh, and in whicb tbe distance berween rwo adjaceDt voies is
less tban or equal to an octave, witb tbe exception of the tenor and bass, whicb may be separared by
as mucb as a tentb. Crossovers are forbidden.

CommenL Tbe restriction about complete cbords and forbidden crossovers is an inplementation
simplification tbat has nothing to do witb Bach, wbo uses cross overs and incomplete skeletal chords
freely, wbenever higber priority melodic preferences lead him to do so. Moreover, tbe tenor and bass
may in rare contexts be separated by an inten'al greater tban tbe tentb in tbe Bach cborales.

1.1.3.3 Generation of accidentals for tbe skeletal notes of the bass. tenor and alto.

For eacb voicc among {bass, tenor, altof tbe following possibilities may be tried:

Tbe natural accidental may be assigned to the current note of a voice.

Tbe accidental of tbe culrent notc of a voice may assume one of tbe follou'ing vatues, depending on
tbe pitcb of tbe oote:

f8,g3,c* d*,bb (bb - b flat)

However, tbe following restrictions apply:

A pitch canDot occur both altered and unaltered in rbe sarne cbord.

Also, tbe following combinatiors are illegal wben tbey occur in tbe same cbord:



d# and any of (f c# g# bb)
f# and any of (c# g# bb) but f#4 is allowed in minqy mod.
g# and any of (f# d d# bb)
c# aod any of (f# g# d#) but d-f# is allowed in mioor mode
bb and any of (f# gf d#)

Commeot: Funber rules to filtcr out illegal or uogainly combinations of pitcbes and accideotals will
be given is larcr paragraphs.

t.1.3.4 Generation of otber cbordal attributes

Tbe other cbordal attributes sucb as the root, root accideDtal, cbord type, tbe presence of a unisson,
are computed in obvious ways from tbe cbosen cbord.

1.1.4 Generation of tbe key aod barmonic degree within the key

1.1.4. I Resrrictions on agreement of degree and cbord.

Tbe legal cbords on tbe degrees of tbe major key C are all tbe possible inversions and arrangemenB
of &e following:

I :  ceg
16_4: ce g (second inr'. only)
I I :  dfa"dfac
trp,  dfa,dfac
I I I :  cgb
lV: fac
IVp: ta c
IV_7: face
V: gbd,gbdf
VI:  acc,aceg
Vtr :  bdf

A major key does not bave legal degrees otber tban tbe ones lisud above.

Tbe legal cbords on degrees of tbe minor key A are all tbe possible inversions and arrangemens of
tbe following:
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I :  ace
16 4: a c e (second inv. only)
I I :  bdf ,bdfa
IIu: b d fs
III: ce g#
IV: dfa"dfac
IVU: df#a,df#a c
V: eg#b,eg#bd
Vd: egb
W: fac
VII :  g#bd,g#bdf
I t rd:  ceg
VIId: g b d

A minor key does not bave legal degrees otber tban tbe ones listed above.

Tbe legal cbords on degrees of tbe otber keys are obtained by transposing tbese tables. Tbe only
acceptable keys are Cf,,G major, and A, D, E minor.

In tbe production rules of tbe following paragraphs, immediately after tbe key and degree within key
and generated, a cbeck is made tbat the curreDt chord is a legal cboice conesponding to tbe chosen
degree and key-

1.1.4.2 Geoeration of tbe key and degree wben tbe current cbord is tbe first cbord

In the very first cbord, one can stan witb either in tbe tonic (I) or the dominant (V) degree of tbe key.

1.1.4.3 Geueration of tbe key and degree wben tbe current cbord is Dot r.be first cbord.

1.1.4.3.1 Non-modulating progressions in tbe major key

1.1.4.3.1.1 Conditions for repeating tbe same degree i:o tbe same major key

U tbe previous key is major, and tbe root of tbe current chord is the same as the root of tbe previous
chord, and rbe previous degree is Dot one of {IIp, IVp, 16_4, m, VU}, then tbe same degree in the
same key may be retained.

Comment: tbe listed degrees were considered urutable for repetition.

1.1.4.3.1.2 Trancition rules between different degrees in tbe same major key

U the previous key is major, and if tbe previous degree is I, tben the current degree can be anl' of tbe
follou'ing in tbe same key: II,IV,VI,V,VII.

U tbe previous key is major, and tbe previous degree is tbe degree tr or IIp, then it is possible to move
to tbe degree V.

U tbe previous key is major, and tbe previous degree is tbe degree tr or trp, tben it is possible to mole
to the degree I or to tbe fundanreotal position of tbe degree Vl, provided sorue voice otber than the
bass rises a third from tbe fiftb of the II cbord to tbe tonic.



U tbe previous key is major, and tbe previous degree is VI, tben it is possibte to Eove to any of rbe
following degrees in the same key: IV,II,V,III.

If rbe previous key is major, and the previons degree is III, tbeo it is possible ro move to tbe IV or
VI degrees.

U rbe previous key is major, and tbe previous degree is IV or IV_7, tben it is possible to conti:rue
with tbe degrees II, V, or Vtr in tbe same key. lt is also possible to rnove from degree lV to tbe degree
I, or revert ro $e IV-? degree bearing tbe major seventh cbord on tbe fourth degree, wben the
prel'iors degree is IV.

Example of IV-|V_7 progression:
No. 301, O Welt, ich mrss dicb lassen

c5
cA
ab3
ab3

eb4

g3

db5
T4
ab3
f3
(")

c5
ab4
T4
db3
(")

bb4
94
bb3
cb3

94

eb3

ab4
eM

(c4 db4Y4
ab2

1p rhi< example, notic: that concem over barmonic syncopation (repeating cbord over barline) bas
a much lower priority tbao a continuing tbe eigbtb-oore linear progression in tbe bass.

If rbe previous key is major, and tbe previous degree is V, tben it is possible to go into tbe \4, trp,
IVp, Itr, VII or I degrees in rbe same key.

U tbe previous key is major, and tbe previous degree is IVp, tbeu it is possible ro go into the V degree
in tbe same key.

Tbe 16-4 degree in tbe maior tey can be approacbed from the II,IIp,fVp and IV degrees and must
proceed to tbe V degree.

If tbe previorrs key is major, and tbe previous degree is VII, tben tbe curent degree may be I in tbe
s"me key.

1.7.4.3.2 Non-modulating progressions in rbe Dinor key

1.1.4-3.2-l conditions for repeating r,he same degree i-n the sarne minor key

U tbe previous key is minor, and tbe previous degree is not a member of tbe set l16_4, II, Iyu, Uu,
m, VII, Vd| tben rbe same degree in tbe same key may be retained.

commeni: Tbe chords listed bere were considered unstabte for repetition.

l-1.4.3.2.2 Rules of transition betn'een differeot degrees in tbe same minor key

U tbe previous key is minor, and il tbe previous degree is I, tben tbe current degree can be one of rbe
follou'ing in tbe same key: II, IIu, IV, fVu, V, Vd,Vl, VII.

U the previous key is minsv, and if tbe previous degree is Vd, then the current degree can be IV, or
VI il tbe same key.

U tbe prel'ious key is minor, and tbe previous degree is one of II, IIu, IVu, tben the current degree
may be tbe V degree bearing a dominaot cbord in tbe sane key. Tbe I degree may come afrer tbe IIu,
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pro\ided tbat there exists some voice differeot from tbe bass, wbicb rises from tbe fifth of tbe IIu up
to the root of I.

If tbe previous key is minor, and if tbe previous degree is II, tben tbe current degree may be I in tbe
sane key.

If the previous key is minor, and tbe previors degree is Vl, tben tbe current degree can be one of fV,
II or V in tbe same key.

If tbe previous key is miuor, and tbe previous degree is IV, then tbe cunent degree may be one of II,
L V, m, or VII in tbe same key.

If tbe previous key i5 minsJ, and the previous degree is ltr, tben tbe current degree may be I or VI in
tbe same key.

If tbe previous key i5 min6J, and tbe previous degree is V, then tbe current degree can be one of VI,
VII or I in tbe same key.

U tbe previous key is minor, and tbe previous degree is VII, tben tbe curreDt degree may be I in tbe
same key.

The 16_4 degree can be reacbed from tbe II, fV, and VI degrees, and must procced to V.

1.1-4-3.3 Modulating progressions in the major-and minor modes

Comment: The foltorving technique is used for modulations: At a given time, the cborale is in onJy
one key (wbicb can be understood as a canonical name for the set of possible keys tbat tbe cborale
migbt be in at that time). Tbe key of tbe previous cbord is kept as long as tbere are no accidenrals i-n
tbe current cbord tbat do not agree witb the previous key. Tbe main exception to tbis convention is
tbe following: ln tbe beat just before tbe fermata, it is allou'ed to cbange key even if there arc no
accidentals tbat violat€ tbe previous key so that tbe tast two cbords of a pbrase can bave a sensible
progression in tbe same key. AIU'ays allowing to cbaDge the key wben the accidentals of tbe current
cbord do not violate tbe previous key, was found o produce an excessive amount of candidates.

If (tbe curreDt cbord bas an accidental different tban tbose allowed by tbe previous key, or tbe current
bear b immediatcly before a phrase eoding) and tbe current cbord can be construed as the dominant
or tbe VII'th degree of some neu' key, and tbe roots of tbe previous cbord aod tbe current cbord
produce a II-V, IV-V, V-V, VI-V, I-V, IV-VII, I-VU, or W-VII progression in tbe new key, tben that
new key can be entered at the dominant or seventb degree. However, the accidental of tbe root of
tbe cbord preccding the new key's dominant or seventb must agree witb the new key, unless tbat root
b the sharpened founb of tbe new key. AIso, if tbe current cbord is a dirninisbed seventb, and the
previous cbord is 3 minsJ triad, and tbe roots of the previous and current cbords produce an ascending

' cbromatic motion, tben it is possible to enter a new key at the VII degree.

Some furtber rules apply to tbe modulation pattem described above:

Tbe cbord type of Oe cbord preceding tbe dominant of tbe new key nrtrst also matcb the follou'ing
cbord patterns. depending oD tbe progression:

sharpened IV-V: sol# si re, sol# si re fa#, sol# si re fa

I-V iE minor key: la do mi

VI-V or ry'I-VII in major key: la do mi



c5 d5
e4 94
a3 b3
a3 g3
A:I
C:VI V

a4 b4 c5 c5
e4 e4 c4 e4
c4 b3 a3 a3
a3 gF3 a3 

^2

e5
94 a4
e4
c4

If tbe new key is minor, and the prel'ious chord can be consrrued as tbe IIu or IVu degree of tbe new
minor key, tbe sharpened sixth of tbe new minel fgy in the previors cbord must move to tbe sbarp-
ened seventb in tbe currenr cbord

Example of VI-V-I eDtry to new Ley;
No. 12, Acb wie flucbtig, Acb wie nicbtig

I-_-

If tbe current cbord bas ao accidental different tban those aUowed in tbe previous key, and if tbe neu'
cbord can be construed as tbe dominant or seveDth degree of a new key, and if tbe previous cbord is
a major cbord, tben either tbe roots of the previous and current cbords produce an asceoding major
tbird or a descending minor tbird and tbe new key may be eDtered via tbe dominant degree, or lbe
roots of tbe previoru and current chords produce an ascending chromatic motion or a desceoding di-
minisbed founb and the new key may be entered via tbe seventb degree.

Example of descending minor third progressioo of roo6:
No. 21, Als der gutige Gott

i#4

G:V C:V

Example for ascending major third progressiors of roos:
No. 29, Auf meinen lieben Gott

C:I

U (tbe current cbord bas an accidental different tbao those allowed in tbe previous key, or tbe Dext
beat is a phrase endilg) and tbe oew accidental is the flattened seventb of the prer.iou major key or
tbe flattened second of tbe previous minor key, and tbe current cbord can be construed as the II, lV
or VI of some Dew key, tben that new key may be entered at tbe II, IV, or VI degrees; provided that
the cbord preceding these II, IV or M degrees can be construed as tbe I, V, VI degree of tbe neu' key

in case tbe new key is major or it can be corstrued as tbe l, VlId , or IIId degree of tbe neu' key in

case tbe new key is minor.

(fr)
e5 c5
94 94
c4cr ' .
c4 c3

94
f34 e4
b3
e3

M
t#4
b3
d$3

a4
94
d4
dl

e5
a4
c4 b3
a3 93

e5
b4
e4 d4
g#3

A:V

g5

94
d4
b3

e5
94
c4
4
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However, tbe follou'ing restrictioo applies:

U tbe previous key is a major key, and tbe next beat is a pbrase ending, tben $e tonic of the cunent
key cannor be a perfect fourtb above tbe onic of tbe previou key

Comment: Tbe restriction rules out, e.9., tbe possibility of enrling a phrase with tbe cbords G: I - V
- t - IV C: IV - V, whicb, while OK within a phrase wben followed by I or VI or C major, sounds fike
a straDge excursion to mixolydian G at a phrase ending because tbe sensation of G major bas not yet
been erased.

U tbe current chord cont"in( tbe flatrcned seventh of tbe previou major key or tbe flattened second
of tbe previous minor key, lhen a Dew key may be entered via rbe dominant seventb, provided tbat
tbe roots of tbe previous and cureDt cbord make an ascending milor third or descending major tbird
motion. (Otber inten'als were handled above.)

If the current cbord can be construed as tbe II'nd degree of some minor key other than the cunent
key, aod tbe current cbord has an accidental foreign to tbe current key implies it is (tbe sharpened
founb of the previous major key, or tbe sbarpened sixtb of tbe previous minor key), tben a neu'key
can be entered at tbe second degree. Tbe previors chord must be erplainable as one of [, IUd, I\r,
or VI degrees in tbe new min61 fsy

U tbe previous key is major, and (tbe current cbord bas aD accidental foreign to tbe previous key in-
plies tbe current cbord is the seventb degree of tbe previous key using tbe sbarpened founb of tbe
previous key), tben a new minor key can be entered at tbe IIu degree. Tbe previous cbord sbould be
explainable as I, IIId,IVu, or Vtrd in tbe new key.

U tbe previous key is minor, and if the previous degree is I, and il tbe previous key is tbe tonic key,
tben the relative major degree can be entered directly at tbe I degree. But both tbe previous and tbe
crrrrent cbords mtrst b€ in the fundamental position.

Example: No 210, Jesu meine Freude

Just before a phrase endi-og, a new key cao be entered at tbe I degree. Hou'ever, if tbe new key is a
major key, the previous cbord should be explainable as I, II, fV, V, or Vll of tbe new key, and if tbe
new key i5 minsJ, tbe previous cbord sbould be explainable as I, [I, md, IV, Vl, V, or VIId of tbe
nen'key.

However, tbe follon"ing restriction applies:

U tbe previou key is major, then tbe tonic of the previous key and tbe tonic of tbe current key cannor
produce an ascending founb.

Comment: This last nrle is for enabling a I-V cadence patlern to be entered from a different key,
bypassing tbe normal modulation rules. Tbe purpose of tbe restriction is to rule out, e.g., a G: IV C:
I - V ending wbicb may cause in tbe fill-in view an f# inessential Dote oD tbe IV of G major, and an
f natural i-oessential note oo tbe I of C major.

b4
94
d4
93
I

c5
a4
d4
f#3
v

b4 b4
94 94
e4 d4
e3 f#3 93
e:I  G:I
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Plagal entry to a new key in tbe sbarps direction:

If the previous cbord is tbe VI degree of a major key or tbe I degree of a minor key, aod (the current
cbord is a major tiad wbose root is a major second below that of tbe previor.rs cbord, or tbe curreDt
cbord is a minor uiad whose root is a perfect fourrh below tbat of tbe previors cbord), tben a new
key wbose tonic is equal to the root of the current chord can be entered at degree L

U tbe previou degree is tbe I degree in a major key, or tbe VI degree in a minor key, and tbe current
cbord is a major uiad wbose root is a perfecr fourth below rbat of tbe previous cbord, tben a new key
whose tonic is equal to tbe root of tbe curent cbord can be entered at tbe I degree.

Comment: tbese last two "plagal" modulation rules do not imply any accidentals foreign to the pre-
vious key in tbe chord skeleton (except wben a minor key is left by the VI degree), but could imply
an accidental foreign to tbe previous key in tbe inessential Dotes. For example, aD iDDer pan could
move by tbe eigbth notes e4 f34 94 when G major is entered from C major via tbe cbords Am-G.

U the previots cbord is on a phrase ending, and the prerious chord is a major cbord n,bose root can
be tbe tonic of a minor key, and the current cbord's root is tbe same as tbe previous chord's root, and
tbe current cbord is tbe fundamenral position of a minor triad, tben a new minor key can be entered
at tbe I degree.

glample: No. 77, Ein fesa Burg ist uoser Gott

b4 a4 94
f#4 e4
b3 b3
d#3 e3

(fr)
I#4
d#4
b3
b3

d5
t#4
b3
b3
(")

Dote tbe false retation d#4- d5

1.1.5 Generation of the clicbe_id, cliche_pointer and force_suspension attributes

Tbe cbord skeleton view treats certain cbord patterDs specially, called 'clicbis.' Tbere are two type
of clicbis, tbe mid-phrase clicbis, and tbe cadence cfichis.

The clicb€s are 3 chord long diatoaic chord pattems tbat are given below. Tbe last soprano note of
tbe patterns are fixed as c5 in tbese tables, but any transposition of a pattem will match tbe pattem.
A ' matcbes arytbing. A pattern note follon'ed by (s) must be elaborated witb a suspension at is
suong eigbtb beat in tbe fill-in view. Similarly a pattem note followed by (n) or (d) must be elabo-
rated with tbe normal or descending states in tbe fill-in view, respectively. (tbese requirements are
transmitted to tbe fill-in view via tbe force _srxpension attributes).

No. 0 (cadence clicb€)

d5 d5 c5
c5 b4 94
a4 94 e4
f393'



(fr)

'e4
d#4 b3
b3 a3 93
b2 eZ

t#4
e4
d

^2

b4 z4 94
d4 e4
g3 a3 b3

93 e3

d5 d5
c5 b4
a4 94
f4 94

d5 d5 c5
a4 94 e4
cA b3 93
f3 93 c3

Example: no. 41 Christ lag in Todesbanden

No. I (cadeoce clicb€)

c5
94
94
&

No. 2 (cadencc clicb€)

No. 3 (cadence clicb6)

d5 d5 c5
ba(s) b4 94
94 94 e4
g393'

Example: No. 33 Befiehl du deine Wege

(fr)
d4
a3
f3
d3

e4
c4
.93
a2

94 14 e4
d4 d4 d4 d4
93 a3 a3
e3 f3 g3 a3

l4
d4

^3d3

(But tbe bass begins an octave higher in this example)



No. 4 (cadence clicb6)

d5
94
b3(s)
93

No. 5 (cadence clicbe)

d5 d5 c5
b4(s) b4 a4
f4 f4 f4
b3 d4 f4

Example: No. 165, Herzlicb tbut mich verlangen

d5 c5
94 e4
b3 93
92 c3

(fr)
I#4
d#4
b3
b3

94
e4
b3

f#3 93 a3

d5 d5. c5
14 b4 a4
b3 14 f4
b2 di t3

a4b4c5
14'e4
cr ' . '93
f3 d3 c3

a4 b4 c5
4te4

a3'93
f3 d3 c3

94
f#4
b3
e3

No. 6 (cadence clicbC)

No. 7 (cadence clicbe)

No. 8 (cadence clicb6)



No. 9 (mid-phrase clicbe)

a4
T4
cA(n)
f3

Example: No. 26 Auf meinen lieben Gott

b4 c5
e4 e4
b3(d) a3
93 a3

834
*4
c#4
c3

a4 b4 *4
t#4 e4 e4
*4 d4 d4 b3 a3
l:3 g*3 a3

c5
a4
e4
c3

c5
a4
cA

^2

bb4 c5 bM a4
94 94 I#4 g4 f#4
d4 cA d4 d4 cA
93 92 

^2 
bb2 c3 d3

d5
a4
d4
I#3

No. l0 (mid-phrase clichi)

d5
g4(s)
d4
b2

Example
No 82, Erbalt uns, Hen, bei deinem Wort

94
94
bb3
eb3

(No. 397, Wir Cbristenleut, aho contains an example of clcbi no. l0 where the bass does oot jump
an octave).

Tbe clicbds are used as follows: if tbere is a clicbe tbat matcbes the current skeletal soprano pitcb, and
tbe following two soprano pitches, then a state corresponding to that panicular clicbe may be entered
(the clicb€ state is denoted by tbe value of clicbe_id). Wbile in rbar srate, at least the fint two chorG
of tbe corresponding clicb€ must be fulfilled. Alternatively, a clicbe state may Dot be entered
(cliche_id may be set to 'Dull'), even if an opponunity exiss. Tbe follou'ing nrles implenrenr tbe
low-level details of this mecbanism. The force suspension attributes are used for passing inforna-
tioo to tbe fill-in view for enforcing aDy suspeDsions (or otber desired fiu-iD stares) in tbe ongoing
cUcb€.

U (tbe current cbord is the very first cbord or if tbe previous clicbe_id is oull), and if tbe crrrenr
skeletal soprano pitcb and tbe t'rvo follou'ing soprano skeletal pitcbes match the corresponding
soprano items of some cUcbe in tbe clicbd table, it is possible to assigD tbe number of tbat clicbe ro
clicbe_id and to assign 0 to tbe clicbe_pointer. Wben a midpbrase-cliche is so cbosen, tben tbe
skeletal soprano Dote tbat conesponG to the end of tbe pattem must Dot be a phrase ending.

U (tbe current chord is the very first cbord or if the previous clicbe_id is null), ir is possible to assign
null to both of tbe cunest clicbe id and tbe current clicbe_pointer
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U tbe current cbord is not tbe very first, and if tbe previous clicbe_id is not null, and if tbe current
chord matcbes tbe item identified by the previors clicbe id and the previons cliche_poioter+ l, and
tbe ctjchc identified by tbe clichejd bas iterns in it be$nd tbe item matcbed by i6E cunent chord,
tben it is possible to assign the value of rhe previous cficbe_id to tbe current cliche_id, and tbe
value of tbe previors clicbe_.pinter + I to the cunent clicbe_.1rcintcr.

If tbe cunent cbord is not tbe very first, and if tbe previous clicbe_id is not null, and if tbe curreDr
cbord marcbes the item identified by tbe previons c[cbe_id and tbe previous clicbe_pointer+ l, and
tbe clicbe identified by tbe clicbe_id bas at most one item in it beyond tbe itcm matcbed by tbe
cuneDt cbord, tben it is possible to assign nuU to botb tbe current clicbe_id and the curent
clicbe_;rcinter.

Wbenever tbe current clicbe_id is set to a oon-nuu value, tbe current force_suspension attributes
are set according to tbe clicbe_id in order to enforce any required suspensions (or otber filJ-il states)
in the fill-in view. Otberwise force_suspension attributes are set not to enforce any suspensions (or
otber states) in tbe fiu-iD view.

1.1.6 General constraints pertaining to tbe cbord skeleton view

I.l.6.l Cadence coostrain6

U tbe current soprano pitcb bas a fermata on top of it, (i.e. this is a phrase ending) tben tbere must
exist an entry in tbe table of cadenccs sucb tbat tbe chorale's mode, tbe pitch of tbe current (pbrase
endiog) norc of tbe soprano, tbe accidental of tbe curreDt (phrase ending) nore in tbe soprano, tbe
key, position" and root of tbe previous (penultimate) cbord, and tbe root of tbe cunent (pbrase end-
ing) cbord all matcb that entry.

U tbe next soprano pitcb has a fermata on it (i.e. tbe curreot cbord is tbe penultimate cbord of a
phrase), tben tbere must exist an entry in the table of cadences sucb tbat tbe cborale's mode, the pitcb
of tbe next sopraoo note (tbe phrase ending) tbe accidental of tbe Dext soprano note (tbe phrase
ending), tbe current key, the root of tbe current (penultimate) cbord, and the position of tbe current
(penultimate) cbord all natch rbat entry.

Tbe table of cadences is given below.

Explanation 6f sslrrmns of tbe cadence table:

mode: mode of cborale

soprano pitcb of ending: the pitcb of tbe pbrase ending note in tbe soprano, expressed as an interval
(mod 7) from tbe tonic of tbe cborale. (e.g. fiftb in major mode mern< tbe soprano pitcb (mod 7) is
is c+fiftb - g)

soprano acc. of ending: accidental of tbe pbrase eoding Dote of tbe soprano

tey: key of cadence progression, expressed as an interval (mod 7) from tbe tonic

root of penulu: root of penultimate chord, expressed as an interval (mod 7) from the tooic

pos. of penult-: position of penultimate cbord.

root of ending: root of tbe chord at tbe phrase ending, expressed as an interval (mod 7) froru tbe
tonic.

A table entry marked as' will matcb aDythiDg.
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Example: The second entry in tbe table asserts tbat wben a pbrase eods on tbe tonic in tbe major
mode, a VII-I cadence is possible in the key of tbe tonic, wbere tbe VII cbord is in tbe first inversion.

mode key

majornr
najorm
majorm
majorm

majorm
majorm
majorm
majorm
majorm
majorm

majorm
majorm
majorm
majorm
majorm

majorrr
majorm
majonn
majorm

majorm
majorm
majornr
majorm
majonn
majorm
majorm
majorm

majorm
majorm
majorm

majorm
majorm
majorm
majorm
majornr
majorm
majorm
majorm

sopraDo
pitch of
ending

gnis.ggIt

unissoD
gnisggp

unisson

second
secood
second
second
second
second

rhtud
third
third
third
third

founb
founh
founb
founh

fiftb
fifrb
fifrb
fiftb
fiftb
fifrb
fiftb
fifrb

sixth
sixth
sixrb

seventb
seventb
seventb
seventb
seventh
seventh
seveDtb
seventh

soprano
acc. of
ending

a

a

a

a

a

a

a

a

a

a

a

a

a

I

I

a

a

a

rt

a

a

a

a

a

ra

a

a

root of
penult.

fifth
seventh
fifrb
Unissotl

Unis59g

second
fourth
second
founb
sixth

fifrb
seventb
second
third
fifrb

gnis596

third
unisson
sixth

urissoD
second
second
fourth
fourth
fourth
seventh
second

third
third
Uni(Son

unisson
fourth
second
second
fourtb
seven!h
second
sixth

pos. of
penult.

I

a

a

a

first_inv
a

a

a

root of
ending

unisson
unisson
unisson
fourth

unisson
unisson
unisson
fifth
fifth
second

Unisgg6

unisson
second
second
second

fourtb
fourtb
fourtb
second

unisson
unisson
fifth
unisson
fifth
unisson
rhLd
third

sixth
sixth
fourth

unisson
unisson
Unisson
fifrh
fiftb
sixth
sixth
sixth

a

a

a

a

first_inv
a

a

first_inv
a

a

a

fifrb
fiftb
fifrb
fifrb
fifth
second

unisson
unis59p

sixtb
sixtb
sixth

fiftb
fifrb
fifrb
fifrb
fiftb
unisson
third
third

fiftb
fifth
fifrb
fiftb
fifrh
third
tbird
third

' unisson
first_inv unissoD
fundamental sixth
' fourtb

' fourth
first inv founh
fundanental second
t second

a

a

a

' si:tb
fundamental founb
' founh

a

a

a

a

a

a

a

rt

I

a

a

a

first inv
a

a

a
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mlnorrn
minorrt
rningga

minorrr
minorm
Drinorm
minorm

minorur
minggn

minorm

mingJp

minorm
minorm

minorur
minggl

ninonn
milorm
minorm

minorm
minorm

minggn

minorm

mingJ111

minorm
min961

minonrt

minorm
minorm
ming61

llolsson
unisson
unisson

second
second
second
second

tbitd
rhird
tbird

founh
fourth
fourth

fiftb
fifrh
fiftb
fiftb
fifrb

fifth
fifth

sixth
sixth

seventb
seveDth
seventh
seventh

seventh
seventb
seventh

a

rt

a

a

a

natural
natural
natural
naturd

sbarp
sbarp
sbarp

unrsson
unisson
unisson

unisson
uuisson
unisson
seveDtb

third
unisson
rrnissOn

founb
seventh
seventh

unisson
unisson
unisson
fifrb
fifrh

fourtb
third

sixtb
sixtb

seveDtb
seventb
fifrh
fifth

gnis5qn

unisson
usisson

fifrh
fifrh
seventb

Uni(SOn

second
founb
founh

seventh
fiftb
fifth

unisson
sixtb
fourtb

Unicgg6

second
fourtb
second
fourth

founb
seventh

third
third

fourtb
sixtb
second
fourth

uni<son
fourth
second

a

a

a

a

a

first_inv
a

a

a

a

a

a

a

first_inv
a

a

fiftb
fiftb
fifrh
seveDtb

third
unisson
sixtb

founb
seventh
seventb

fifrh
fifrh
fifth
fifth
fifrh

s€veDtb
seventh
fiftb
fiftb

fifrh
fifrb
fifth

a

a

a

a

a

a

a

a

ra

a

I

a

a

a

a

a

' unisson
fundamental sixtb
t uoisson

' unisson
fundamental third

' sixtb
fuodamental fourtb

a

a

a

All cadences must constitute a I-V, tr-V, IV-V, V-I,V[-I, V-VI, IV-I progression in some key. In
V-U, V must be in fundamental position. [n VII-I, VII must in the first inversion. IV-I is allowed
only in tbe major key wben tbe sixth of tbe key desceods to tbe fifth of tbe key in tbe last two skeletal
Dotes of tbe soprano.

As ao exccption to tbe above rule, tbe key can also cbange on the final cbord, under tbe foUowing
circumstances: wben tbe root of tbe eoding chord is one of {la, mi}, and tbe (key,degree) attributes
of tbe penultimate and final cbords confonn to tbe pattems (key, V), (key+fourth, V); or (key, \'1I),
(key+fourtb, V). Wben the degree Vtr is used in tbe latter coDtext, it must be in tbe fundautental
position.

Wben tbe penultimate cbord of a pbrase is the first inversion of tbe \/II degree in some key, and the
soprano does not end '*'ith an ascending f-g or cd (tbese are difficult cases), tbe bass of tbe chord
preceding tbe penultimate cbord must constitute tbe tbjrd or founb of tbe key tbat tbe VU belongs
to, and the bass of tbe Vtr mut be approached by descending motion.
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d5
b4
g4 14
g3

d5
bb4
T4
dI

a5 a5
e4 c5 d5 c5
cA d4
tt r#3

Wben tbe penultimatc cbord of a pbrase is the V degree of some key, tbe preceding cbord cannot be
a minor cbord n'itb tbe sarne root as tbe penultimate cbord.

Comnreut: thi< is islsDded for nrling out B minor - B major - E mioor cadences, wbicb sound weali.

Tbe pattern C major (fint inversion) - E major or dominant seventb (fundamental positioo), or
uansposidon thereof, crnnot maLcb the pre-peuultimate and tbe penultimate cbords of a pbrase wben
tbe penultimate cbord bas degree V.

Comnent: C major (first invenioo) - E major (fundamental) - A minor is also an out-of-style ca-
dence ruled out by this constraint-

When tbe penultimate chord has degree V, and tbe penultimate cbord and tbe one preceding it
produce a G major-E major progression (or transposition tbereof) tben eitber the bass or tbe soprano
must move by tbe ascending chromatic motion g-g# (or uansposition tbereof), and the curreDt phrase
must Dot be the last.

Example: Not in style:

(fr)
c5
94
e4
c3

Good:

(fr)
g5
b4
d4
93

Tbe piece sbould end on a chord wbose root is tbe tonic.

At tbe ending phrase of rbe piece, tbe penultimate chord must bave a degree equat to V and a key
equal to tbe tonic, and must be in the fundameotal position.

Tbe penultimate phrase cannot end witb tbe I degree in tbe ronic key.

Comrnent: violations of tbis nrle are rare in Bacb, and are sometimes tbe result of some otber con-
cem: for example in no. 118, Gott der Vater, 1ry6!p rrns bei, the penultimate pbrase ends on the
mediant whjcb is accompanied by the tonic chord, but thb could be because tbe mediant has already
occured in two previous phrase endings, and tbe non-tonic accompaninent. cboices bave alreadl'
been used up wben tbe penultimate pbrase is reacbed.

Phrases must end n'itb a triad i! root positioo which has its root doubled, but tbe fiftb can also be
doubled in tbe ending oD tbe V degree of a minor key, if the penultimate cbord is tbe subdominant
seventb, and tbe third can also be doubled n'ithin a V-VI cadeoce.

Comment: exc€ptioDs to this rule were rliscussed in the text-
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Wben the V degree appears in association witb rbe penultimate cbord or a pbrase, tbe penultimate
cbord must be in tbe fuodamental position or in tbe first inversion. (If it is in tbe first inversion (ben

it must jump to tbe root by an eigbth note movemeDt - to be accomplisbed by fill-in view).

U the cborale's mode is minor, and the curent chord is tbe final chord of a phrase, and tbe root of
the current chord is tbe tonic, and the (key, degree) patteros of tbe penultimate and final cbords are
equal to (key,X), (key+founb,V) (tierce de picardie), tben the current chord sbould be tbe very
endirg cbord, and tbe two preceding cbords should be in the key of tbe tonic.

No voice rnay move an interval greatEr than a fiftb between tbe penultimate cbord and tbe final cbord
of a phrase.

Within a phrase, Do two voices can move by parallel motion by intervals of fiftb or greater, except
n'ben one of tbe voiccs rDoves by an octave.

Comment: pe1 slample, d3 f#4 a4 d5 - gZ b3 94 d5 is a bad progression wbicb is prevented by this
rule.

In the minor mode, a phrase ending on the mediant can be accompanied by a non-mediant cbord only
if tbe phrase giding is atrained by a jump in tbe skeleral notes of tbe soprano.

Whenever an phrase ending in pitcb e b accompanied by D minel - A major cbords (in eitber tbe
major or minel vasdss) tbe penultimate skeletal soprano note must descend by minor second to tbe
final sheletal soprano note. But this rule does not apply in tbe ending of tbe penultimate pbrase.

Example of tbe exception to tbis rule in the penultimate pbrase:
No. 312, O wir armen Srtnder (in D major)

(fr)
a4 - t#4
e4 94 184 e4 e4 (d:4 e4) d:4
d4 cX4 c4 b3

Vy'ben tbe curreDt cbord is two beats before tbe fermata, and if tbe current chord is a sevenl.b cbord,
but not a diminisbed seventh, tben the position of.the current chord must not be tbe third inversion.

Comment: for example, tbe cadence z3 t g#3 ! a3 3 in A minor is a weak progression which is pre-
venred by th;s rule.

Two consecutive phrases cannot botb end n'itb a deceptive cadence iD tbe tonic key.

Comment: otberwise tbe ratber cheap 'sad' effect tends to be excessive.

1.1.6.2 Melodic constraints

1.1.6.2.1 Melodic soan of voices

For any voice v<soprano, tbe melodic span of the skeletal pitcbes of voice v from tbe beginning of
tbe cborale up to and including the current pitch, cannot exceed a thirteenth.

1.1.6.2.2 Transposability

b2a7a3

z4 z4
t#4 t#4
d3 a3 d4
d3 e3 f#3 g3
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Tbere exists some inten'al for trancp,osing tbe piece up or down so tbat tbe voices remain witbin tbeir
respective ranges wben tbat lmncposil,ioo is performed (The cborale is always composed in C major
or A minor). More precisely, tbe amount tbat tbe piece has to be u'an(posed up (because of low norcs
out of range) Eust h less tban or equat to tbe amount the piece can be transposed up (via margins
in the higb notes used uDtil Dow); siurilarly, tbe amouor tbar tbe piece bas to be uansposed down
(because of higb Dotes out of range), must be less tban or equal to tbe amount tbe piecc can be
g'ancposed down (via margins in rbe low notes used until now).

Tbe allou'able ranges for each of tbe voices are given below:

soPrano: cA
atto: f3
t€Dor: c3
bass: e2

CommeDt: Tbe range is measured by tbe number of white keys enclosed iD it" accidentals are ignored.

1.1.6.2.3 Absolute maximum ranse of voices

Tbe pitcbes must also remain witbin certain absolute limits. Tbe absolute [rnis are c6 and c2 whicb
usually provide comfonable transposition margins.

1.1.6.2.4 Limis on melodic inten'als

Melodic i-oten'als u'ider tban a sixtb are Dot allowed, q'itb tbe exception of tbe octave skip. In the
bass, a skip of a seventb is allowed, if preceded by a motion in tbe opposirc direction, provided tbat
it is not a leading note-tonic motion, and provided that any skip preceding tbe seventh is less wide
tban a sixth.

Comment: Seventb skjps in tbe bass are cbanged to octave skips by tbe fill-in view, for example f4
93 c4 becomes (f4 f3) 94 c4.

1.1.6.2.5 Repeating tbe leading note in the bass via octave jump

In the bass, if tbe previous cbord is the V or VII degree of some key, and tbe bass sounds tbe leading
note in tbe previous cbord, then the !355 gannot repeat tbar leading note in tbe curreDt cbord by
jumpilg a perfect octave.

1.1.6.2.6 Excessive skips in tbe leading Dote duriDg a V-I or VII-I progression

Tbe leading note in a V-I, or V[I-I progression cannot move up by more tbao a fourth, and cannot
move dowl by more than a third.

Comment: tbe leading note need Dot go to tbe tonic in tbe cborale style. However, it should Dot make
very wide skips eitber.

1.1.6.2.7 Sevenths and ninths spanned in three notes

A seventb or an inten'al greater tbaD a ninth cannot be spanned in three Dotes, except wben there is
a pbrase boundary between tbe three notes.

a5
d5
a4
d4
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Comment: Tbis nrle was placed in cbord skeleton because even if such a Eotion is filled in to remove
tie inerval spanned in tbree ootes, it still sounds bad.

1.1.6.2.8 Ninths spanned in four nores, t€nths spanned in five ootes

It is not allowed to have an interval of a nintb or greater between tbe n;rb sketetal oore of a voice and
tbe o-3'rd skeletal note of tbe same voice, except wben there is a pbrase boundary between tbese rwo
DOtes-

Similarly, it is not allon'ed to bave an inten'al of a tenth or grearer between tbe n'tb skeletat oote of
a voice and the n-4'rd skeletal note of the same voice, cxcept wbeo tbere is a pbrase bouodary be-
tween these two noEs.

Comment: seguences sucb as c3-a3-g3-e4, or c4-d3-e3-a2,or a2-d3-e3-g3-c4 are bad in rhe cbord
sleleton even if tbey are filled in at tbe eighrb oore level.

7.1.6.2.9 Augmented melodic intervals

Augmented seconds or founbs between two successive skeletal notes iue not allowed in any pan

Commsal' Further restrictions are imposed by the melodic string view of tbe fill-in proc€ss.

1.1.6.2.10 Ascending rf iminished fifrb in tbe coDtext of V-VI in tbe minor key

U tbe previous key is minor, and tbe previous degree is V, and tbe current cbord can be construed as
tbe VI of tbe same minor key, tbe fifth of tbe previous cbord caDnor. move (by diminisbed fifrh) ro
tle root of tbe curreot cbord.

Comment: thi< is intcnded to rule out, e.g., an I#3-c4 motion in some voice u"ithin a V-VI progression
in E ninor.

1.1.6.2.11 
. 
Repearing tbe bass noe

A bass Dote caD be repeated (mod octave) over rbe barline only if tbe second cbord is tbe third in-
version of a seventh cbord. But tbe bass note may also jump an octave over the barline during tbe
first tu'o quanerbeats of a cborale tbat begins r+'itb an anacrtrsis, provided these two quanerbeas botb
sound tbe tonic cbord in its fundamental position.

Example of tbe bass jumping aD oclave over tbe barline:
No. 57, Danket dem Herren. denn er ist sehr freundlicb

.4
e4
c4
a2

b4
b4
e4

c5
a4
e4
a3

c5
b4 a4
e4

gi3 a3

A bass note canDot be repeated (mod octave) at tbe second and tbird beas of a measure. if tbe roos
of tbe two cbords are identical.

1.1.6.3 Harntonic Constraints

1.1.6.3.1 Doubling and movement of the leading note
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b4
d4
g3

93

d5
d4

b3 a3
93 tt3

b4

94 f!4
e4 d4
e3

Tbe leading Dot€ canDot be doubled in cbords wbere the degree is V or VII of any key, or wbere tbe
degree is III of a minor key.

Comment: Bach sometimes doubles tbe leading note, when there is a good linear motioo in botb of
tbe voiccs that producc tbe doubling, but a computer probably sbould Dot do so.

Example of doubling of tbe leading note:
No. 201, Jesu meine Freude

d5
e4
c4
a3
(")

U tbe current key is not equal to tbe previous key, and tbe current cbord can be construed as tbe V
or VII degrees of tbe previous key, then tbe leading note of the previous key cannot be doubled in tbe
curreDt cbord.

Comment: this is required for avoiding doubling the leading note of C major in tbe second cbord of
a progression lilie C: I a: II (- C: VII) a: V.

If tbe previous cbord is tbe II degree of a minor key, and tbe cunent cbord is a major triad on tbe third
degree of that minsJ key, tben the root of tbe previous chord c.nnot be doubled.

U tbe previous chord is tbe V or VII degree of some key, and tbe root of the current cbord is equal
to tbe tonic of that key, and tbe leading note of that key occurs at tbe bass of the previous cbord, or
if tbe previous cbord is tbe tr degree of a minor key, and tbe current cbord is a major cbord on tbe
third of tbat minor key, and tbe second of tbat minor key occurs at tbe bass of tbe previous cbord,
tben tbe bass must proceed by upward srcp.

Conrment: if tbe leading note is in the bass, tben it is awkward for it not to go tbe tonic in a relative
V-I progression, even wben tbe relative I cbord begins a new key.

Tbe sharpened sixth of tbe melodic minor key cannot be doubled in the Uu and IVu cbords.

1.1.6.3.2 Consecutive fifths and octaves witb parallel or contrary motion

Consecutive perfect fifths (twelveths) and octaves (unissons) are Dot allon'ed by parallel or contrary
motion, among any of tbe pars. However paraUel fiftbs are permissible wben tbe second fifth is di-
minicbed, and tbe parts move by descending step, or between tbe soprano and alto at a phrase ending,
if the fint fiftb is rliminished, and the parLs move by ascending step. A.oy direct motion to a dimin-
isbed seventb chord is also permissible.

Comments: dtbough most modern barmony booPs forbid tbe sequence diminisbed filtb/perfect filth,
its frequent and conscious usage in the chorales justify is inclusion as a rule in the form giveo bere.
Tbe chorale Acb bleib bei uns, Herr Jesu Cbrist, no. l, contains a typical example of sucb fifrhs.

Tbere is also another s€quence of parallel perfect fifths. where tbe upper voice approacbes tbe tonic
witb an anticipation. This case will be treated in tbe eigbtb note fill-in view.

As mentioned in tbe main text, Bach sometimes breaks tbe rule about oonsecutive perfect fifths witb
less subtlety. (e.g. in tbe second Erez\sure after tbe double bar in no. 18 - Alleio zu dir, Herr Jesu
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Christ.) Specifying precisely wbeo such liberties are appropriare are rsually beyond r.he power of a
typical treatise, and a computer program, lilie a less talented bunao studeot, gives better resulb u'ben
ntles are rigorors. Hence we refrained from assigning a liberty to sucb rarer cases.

I.1.6.3.3 Fifths and octaves separated by one lstervsning ctlord

Perfect fiftbs aod octaves sepafilted by one intervening cbord are forbidden, wben tbe inten'ening
cbord has the same root as one of its neighbon.

1.1.6'3.4 Exposed filtbs and octaves in tbe extremal voices (i.e. soprano and bass)

Exposed fifths and octaves are Dot allowed in tbe extremal voices, except during a phrase ending,
where an exposed octave or filth is aUowed if the soprano moves by step. Exposed fifrhs are also
allowed if the cbord does nor cbange

Example for tbe case where tbere is no cbange of cbord:
No. 402, Wo Gotr" der Hen nicbt bei uns balt

b4c5
e4
g3
e3

e4

e3

c5
e4
a3
a.3 94

d5
d4

^3f3
(")

a4
f4
d4
d3
(")

1.1.6.3.5 Exposed filtbs and octaves in tbe non-extremat voices

Exposed fifths and octaves are allox'ed among tbe non-exrremal voices only if one part proceeds by
step, or if tbe cbord does not cbange. Tbe upper pan may also move by a rhird skip (wbich then nrust
be filled in with a passing Dote pattern). The tower part may also proceed by a third skip in case rhe
second cbord is iD tbe first ioversion, and tbe tower pan is not tbe bass.

1.1.6.3.6 CoDtext of seventh cbords

Seventb cbords otber tban the domin2lt seveDtb, dinrinisbed seveotb and tbe seventb of tbe II degree
of a minor key, are not allowed except 2 beats before the fermata, also, Do seventbs are auowed in
tbe very beginning of a pbrase except wben tbe bass cootinues a linear progression. However, a tbird
ioversion of any seventb cbord is allowed in tbe beginning of a Deasure if tbe bass repeats.

Example of a phrase beginning witb a seveDrb chord;
No. 3Ol, O Welt" ich muss dicb lassen

ab4
eb4
eb3
c3

f3

ab4
eb4 d4
ab3 93 ab3
t3

(fr)

94
eb4
bb3
cb3

eb4
bb3
g3
db3
(")

1.1.6.3.7 Resolution of tbe dissonaDr sevenrb

Tbe seventb note in a seventh cbord must resolve downward by stcp.



Comment: A curiow exception to thir rule which occurs in tbe Bach cborales is tbe foUo$'ing: tbe
seveDtb note of a seveDtb, wben it occurs in tbe bass, can also descend by a fourth, provided tbat tbe
founb inten'al is filled-in wi& passing nores:

Example: No. 4, Acb Gott und Herr

a4 94 a4 bb4
t4cr '  c4
d4 e4 14
d4 c4 bb3 a3 g3 f3

(")

M*a4
14 J84 e4
g#3 c4 b3 c4 d4
d3 ds3 e3

94
cA
t4 (e4 d4) e4
c4 c3

(fr)
f4
c4
a3
f3

A similar passage occurs in no. 14, Alle MenscheD milsseD sterben.

1.1.6.3.8 Preparation of the rli<sonant seveDtb

Tbe seventh note iD a seventb cbord must be prepared by sounding it in tbe same part in tbe previous
cbord unJess tbe previotts chord and tbe current one share Oe sane root, iD whicb case lbe seventb
may come witbout preparation. Tbe follon'ing seventh cbords can also be approacbed witbout prep-
aration of the seventb: fint inversion of tbe dominant seventh cbord, any diminisbed seveotb cbord.
But approachilg the seventb of a dominu:t seventh witb chromatic motioo is forbidden.

Comms6l' the seventh of a dominant seventb approacbed by chromatic DotioD seems very mucb out
of style, espe cially in the cadence.

Examples of uoprepared sevenths:
Befiehl du deine Wege, oo. 33

g#4
e4

(fr)
A
e4
cA (")
a2 (")

c'ts (")
e4 (")
a3
a3

Herzlicb tbut micb verlangen, no. 165

(fr)
t#4
d#4
b3
b3

e2
(")

d5
e4
b3
g#3
(")

L1.6.3.9 Approacbing tbe second inten'al in an unprepared seventh

Tbe second interval that nrigbt arise in an uDprepared dominant seventh musr Dot be approached by
parallel motion (tbe seventh or nintb intervd can be approacbed by parallel motion, bowever).
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t .1.6.3.10 7-8 enor

Tbe root of a scventh cbord cannot move a tbird dolr. or a sixth up to tbe resolution of tbe seventb.

1.1.6.3.1I Seventb cbord on the VI degree of tbe major mode

Tbe seventh cbord oo tbe VI degree of a major key mrst resolve to its relative tonic (a cbord n'bose
root is tr).

1.1.6.3.12 Restriction oD coosecutive, non-overlapping barnonic inen'als

Wben two immediately adjacent voices (sucb as tenor and alto) move in parallel motion, aod not(tbe
previous cbord and tbe current chord bave the same root and tbe previous cbord was a phrase end-
ing), tben if tbe voices are ascending, tbe second note of tbe lower voice must not be higber tban tbe
first norc of fte trigber voice, and if tbe voices are desceoding, tbe second note of the bigher voice
must not be lower tban tbe first note of tbe lower voice. There is an exception to this rule between
tbe bass and tenor, if tbe voices are ascending and tbe second iotervd is unisson, or wben tbe voices
are descending and tbe first inrerval is unisson; bowever tbe bass c'nnot skip an interval greater tban
rbe fifrb i6 this exccptional case.

Example for tbe exception:
No. 397, Wir Chrisanleut

f#5
I*4 94
a3 b3
d]

z4 bM
c/.d4
a3 g3 f#3
f3 eb3 d3 c3

(")

(fr)
c5 d5 #5 C5
a4 f#4 f#4 f34
d4 b3 ai3 a#3
a3 b3 J#3 f#3

(")  (")  (")

d5
f#4
b3 (")
b3 ( . . )
(")

(fr)

94 I#4 94
d4 eb4 d4 d4

1.1.5.3.13 Tbe augmented uiad

Tbe degree Itr in the minor mode can occnt only if tbe soprano souods tbe root, and tbe cbord in its
first inversion, and when tbe sopfiulo descends by a thtd after tbe III cbord.

Example: No. 6, Acb Gott vom Himmel, sieb dareio

93 c4 a3
bb2 c3 4}

bb3
92

1.1.6.3.14 Tbe diminisbed triad

Tbe fundantental position of the diminisbed triad on tbe VII degree of a key is not allon'ed unless it
serves to modulate (i.e. tbe previous key is not equal to tbe cunent key).

Tbe fiftb of a diminisbed triad must resolve (upward or downward) by step.
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1.1.6.3.15 False relations

Definition: A fals€ relation erists betweeD two consecutive cbords if tbe same pitcb occurs in borh
cbords n'irb different accideotals and in dilferent voices, aod il oo single voicc sounds $ar pitcb
moviag by cbromatic motioo betweeu tbe two cbords.

False relatioos are Dot allowed unless tbe second cbord is a rlimiuisbed scventb or tbe first inversioo
of a dorninant seveotb or major cbord, and (tbe pitcb concerned is the fifib of tbe first cbord, and the
bass sounds the sharpened oote of tbe false relation and makes a Eotion at most as large as a fourth,
or the pitcb concerned is the third of tbe prer.ious cbord, and the sopraoo rcunds tbe flatteoed note
of the falsc relation). ln case tbe bass souods the sbarpened norc of the false relatioo and moves by
esccnding major tbird (matctring tbe pattem e3-gf3 in a C major - E major cbord sequeoce), tben
rome otber roicc r'rust move in parallel thirds or tcDtbs wirh the bass (matching tbe patterD g4-b4).
(A rule in tlre fill-rn view will eDsure tbat botb of these ascending thirds are filled in with passing
Dot€s.) False relations are also allowed unconditiosally between phrase boundaries, wben tbere is a
major-minor cbord cbange.

Etample of soprano sounding tbe flattened note:
(scc tbc crcerpt from no. 165 above, about unprepared scventbs)

1.1.6.3-16 Major-X-Minor cbord pattcrn

A major cbord cannot be followed by a minor cbord wirb tbe same root, witb one cbord intervening,
unless ttere is a pbrase boundary between tbe three cbords.

1.1.6.3-17 Second inversion cbords in noo-cadential context

Dcfinition: A second inversion of a triad is in cadential context iff there is a phrase ending exaclly t$'o
rtclctd Dotes away (rbis assumcs tbat a phrase eods on tbe second cbord of tbe cadeoce, so tbe pro-
gran will Dot accept e cborale tbat repcab tbe second cbord of a cadeucc at a phrase ending, n'itbour
tying tbe rcpeated coding notes).

If a t cbord does not occur in a cadential @ot€xt, ia bass must occur as a passing note, saodu'icbed
betweeo an immediatcly higber and an immediately lower note. lD this case, tbe neigbboring cbords
cannot atso be ! cbords.

When a sccond inversion cbord wbjcb is uot a diminichsd triad or diminisbed seventb does not occur
io a cadcntial contcx!, or is preceded by a cbord n'bere at least one of tbe pitcbes forming the founh
of tbe sccood inversion occur, tben tbe secood inversion must be prepared by repeating at least one
of tbe ootes forming tbe fourtb in the same voice in tbese two consecutive cbords.

Wben e sccond inversioo chord whicb is oot a diminisbed uiad or diminisbcd seventb is followcd by
e cbord u'bert at least one of tbe pitches formiog tbe fourtb of tbe secood inversioo occur, then tbe
rccond inversion must be rcsolved by repeating at least one of tbc ootes forming tbe founb in the
rame voicc in tbesc two @Dsccutive chords.

Wben a Dew key is entered througb tbe Vtb degree io tbe second inversion, tben tbe root of the V
eod tbc root of tbe following cbord mtrst produce a V-I motion. (Otberwise it sometimes does V-VI
io tbe oew key whicb sounds bad wben tbe V is in rbe second inversion).

l.!.6.3-18 Second inversion cbords in cadential coDtext

Any sccond invcnion cbord in cadential coDtext must be iD tbe 16_4 degree of some key. Ir{oreover,
tbe sccood inversioo cbord in cadential contex( must be sounded on a strong quarterbeat.



A 16_4 degree io cadential context must be followed by tbe V dcgree in rbe same key.

Tbe sixtb aud founb in a 16 4 degree mur resolve downward by sap

lf tbe curreut cbord bas bcen assigoed Oe 16_4 degree, it b occessary to double is bass (fiftb).

Tbe founb produccd by tbe bass and root of a second inversion (not oecessarily in a cadential con-
taxr) cannot be approached by parallel motion, but tbe second inversion of tbe diminished seventh
rnd uiad is ercmpt f16sr thic ruls.

1.1.6.3.19 Rules on modularions

Wben a new key b eorcred via V or Vtr, then tbe roots of tbe V or VII and tbe following chord can:rot
make a II-I or IV-I modon.

Wben a new key is entered in tbe fV, II, IIu or VI degree, tbe key must be imnrediarely confirmed
witb a V, VU. or I degree io tbe new key. Also when a V or VII cbord is rcunded afur tbe tV,[,[Iu
or W; I or a triad VI must follow, possibly after repearing tbe V, or making a V-VII morion.

Wbeo tbe previous degree is trp or IVp, or IU in a minor key, uo modutatioos are possible (tbe cunent
tey must be tbe saltre as tbc previors tey).

Wben tbe previous degree is V of a major key, and tbe cbord preceding tbe previous cbord is again
in the same major key, or is one of tbe I,IV, or VI degrees in a key wbosc tonic is a third belou' the
najor tey of tbe previous cbord (tbe relative minor), tben ir is not possible ro enrer a oew key at tbe
V degree or the VII degree in the current cbord, wben tbe tonics of tbe previous and cunent keys
produce an asccndiog major third, or an asccnding perfecr fifrb inrcrval. If tbese tonics produce an
rcccoding major second inten'al, tbe curent V or Vtr cbord of tbe new key must be followed by a I
or W degree in the same new ley, apd this new key Eust b s min61 ksy.

Comoeou this constraint rules our, e.g., tbe progressions F: I-{n,IV,Vt} - V - la: V, C: Vl. Tbcse
progressioos are uodesirable, becawe tbe B flat tbat may occur citber as.au barnony norc or as an
inesscntial Dote before tbe V of F caues a bad clasb witb wbat follows tbe V of F. Tbe effect of VI-V
in F in rhi( (bntcrt Etust be s$teingd instcad by a plagal modulation F: Vl - C: I, whicb guiuantees
tbar B flat will Dor oocur io tbe fill-in view.

Wbeo tbe previous dcgree is rbe Itr degree of a major key or tbe Vd degrce of a mioor Ley, and a oen'
tey b eorcred in degrec V or VII ou tbe curent cbord, rben tbe root of tbe previous cbord and rhe
ronic of tbe new key cannot produce ao iotcrval of a (pcrfect) unissoa or an ascending minor third.

commencTbiscoostrainrrulesour,e.g.ana: l -vd-e:v(Am-Em-B7)oraDa:I-vd-G:V
(An-Em-D7) progression, wbere some Dote of tbe a: Vd is approacbed via an f narurat in tbc fill-in
vicw because no oodulati'on bas yet occurred. Tbe proper way to rule our an f natural inessential norc
b tbe fill-in view for tbese progressions is to bave a plagal modulation ro E minor, i.e., a: I - e: I - {e:
V, G: Vl.

If tbe two preccding cbords matcb p6- pgrtinl?, tbe current cbord mrut marcb E.

t.1.6.3.20 Resuiction on bcginning cbord of tbe cborate

A cborale sbould bcgin witb a triad, and not on a sccood inversion.

1.1.6.3.21 Restrictioru on cbords beginning a new phrase

A pbrase caDnot begin witb a secood invenion.

261



Here is a pcculiar exccption to this otherwise reasonable restriction:

No. 335, Vom Hinmel bocb da tomm ich ber

d5 c5 b4
(fr)
t4 d5

z4 g#4 e4
a3cA14e44
12 e2 dZ e2 z2

f4 e4
d4 b3

c5
e4
b3

a3 g;3 | af
(")

Tbe second inversion is apparently a double appoggiatura in tbis choralt that represeDrs a dense st)'le,
and tbe barmonic oote is g;3 in tbe bass.

1.1.6.3.22 Miscellaneous

Wbeo piece is finisls6 tbe views pipeline must 6. kept running by cootinually rcpeating tbe last cbord
(this is only a programming convenience).

1.1.7 Heurisdcs for the cbord steletoo view.

Listed below are tbe desirable propenies of an assignment to tbe cbord skeleton elemeot n, in de-
creasing order of priority.

l.1.7.1 Desirability of a deceptive cadence in the penultimate pbrase

It is dcsirable to end tbe penultimarc pbrasc of a cborale witb a deccptive cadeoce in tbe tonic tey.

Erample: No. 39, Cbrist lag io Todesbaodeo

(fr)
94 it4 e4
t:4 e4 e4 d#4 e4
b3 a3 93
e3 b2 c3

1.1.7.2 Desirability of Bacbian clicbCs

It is desirable to usc a Bachian clicb€ pattem.

1.I.7.3 Continuing a lincar progression in rbe bass

lr is desirable to continue an eristing linear progression in tbe bass. More precisely, at tbe chord
rkeleron lsvsl thic lnears tbat it. is desirable to continue to Inove in one directioo uing any of tbe
following inrcrvals: thirds, seconds, and in case the voice is tbe bass, ascenrling cbromatic motion.

Commeot: Tbe thirds will hopefully be filled in later n'itb passi.ng eigbtb notes.

l-1.7.4 Moving by step in tbe bass

It is desirable to move by stcp in tbe bass.

t4
I#4
d4 cA
di



1.1.7.5 Moving by third in tbe bass

It is desirable to move by third iD tbe bass, for subsequent fill-iD by eigbth ootes

1.1.7.6 Desirability of tbe descending founb clicbC

It is desirable to use pattcrns wbere tbe bass desccnds a founb and makes a 3-8 or 5-10 pattern u'itb
some otber voice that rises a third.

Example of 5-10 pattem:
no. 301, O Welt ich mus dicb lassen

c5 dbs
eb4
t4
T3
(")

eb5 cb5 bM c5 (.')
ab4 94 aM 14 94 14 eb4
eM eb4 eb4 g3
c3 bb2 c3 db3 cb3 db3 c3 (")
(")

1.1.7.7 Treatment of doubled cbromadc motioo

U tbe previous cbord movcs to tbe cunent cbord througb a chromatic motion in some part, aod tbe
pitcb sounded by that voicc is also souoded in sooe otber voice in tbc previous cbord, tben it is de-
sirable in that otber voicc to tnove in cootrary modon witb tbe cbromatic ntovetneot-

1.1.7.8 Lyeirling monotony caused by repears

Tbe simple rbythmis structure of tbe cboraje lends itself well to attacking tbe repeated pircb monor-
ooy from tbree aspecB, repeated plain pitcbes, rcpeated high comers (dcfincd bclow), repeared
phrasc codings. A generd rbeory of tooal oelodic conposition would require more sopbisticated
diffcrcntiarion between Dotes for d3fining tbe moat undesirable Donotooous sequeDces.

t.l.7.t.l Avoiding repeatcd pircbes in tbe bass

In tbe bass, it is desirable to use skeletal ootcs tbat bave not been uscd within the last 'u'indowsize'
skeletal notcs. Windowsize is 10.

1.1.7.8.2 Avoiding repeatcd phrase cnding cbords

It b undesirable ro end the current pbrase witb a cbord wbose root is tbe same as tbe roor of tbe cbord
tbat ended tbe previors pbrase.

t.1.7.8.3 Avoiding repcated pbrase eodiogs in rbe bass

In tbe bass, if a pitch bas already occurred as a pbrase ending, lt is desirable not to repear that pitch
es a pbrasc eodiog.

1.1.7.8.4 Avoidiog repcated higb comers in rbe bass

Definition: a Dote is a bigb oomer if it is greater in pitcb tbao the immediately preceding and foUou'ing
DOtes.

In the bass, it is desirable Dot to repeat a pitcb in a higb oorner cootext il the last pitch thar occurred
in a higb oomer coDtext was tbe sarne pitcb.



1.1.7.9 Recornmendatioo on wbat o do afrcr and before a skip in tbe bass

lo ttrc bass, after a skip greater tban the tbird, it is desirable to move by step in rbe opposite direction.
It is also desirable to precede sucb a skip by a step in tbe opposite direction (i.e. it is undesirable to
have a skip tbat is not preceded by a step in tbe opposirc directioo).

1.1.7.10 Continuing an existing linear progressioo in the t€Dor

It is desirable to coutinue an existiog linear progression in lbe tenor.

l.l.7.l I Continuing an existing linear progression in tbe alto

It is desirable to continue an cxisting lioear progressioo in tbe alto.

1.1.7.12 Moving by step or third in the tcnor

It is desirable to Eove by stcp or tbird in tbe tcoor.

1.1.7.t3 Moving by sap or thtd in tbe dto

It is desirable to move by step or third in tbe alto.

1.1.7.14 Avoiding repeated pitcbes in tbe tcnor

In tbe tcnor, it is desirable Dot to repeat a pitcb tbat has occurred among the last'windowsize'pitcbes.
Windowsize is 10.

1.1.7.15 Avoiding repeated pitcbes in tbe alro

In tbe alro, it b desirable Dot to r"peat a pitcb rbat bas occurred anong rbe lasr'windowsize' pircbes.
Windowsize is lO.

1.1.7.16 Recommendations on skip boundaries in tbe tcnor

ln the tcnor, it is desirable to prccede or follow a skip grearcr than a third by a stcp in tbe opposite
direcrion.

l.l.7.l'1 Recommendations on skip boundaries in tbe alto

In tbe alto, it is desirable to precede or follow a skip greater tbaD a tbird by a step i! tbe opposite di-
rcction.

1.1.7.t8 Simultaneous parallel ootion in all pars

It is undesirable to bave all parts moving in parallel, ercept wben rbe arget cbord is a diminished
eevcoth.

Cornment: "It is undesirabte to bave P. crcept wben Q" *u"ily meaas tbe beuristic is false iff [P and
Dor QJ.

1.1.7.19 Chromatic motion

It is desirable to avoid cbromatic motion in tbe pars, except wben the chromatic motion is in tbe bass
eod moves upward.



g4
g4
c4
e3

e4
T4
c4
T3

T4
CA
a3
n

Commenu Bacb sometimes liles to bave cbromatic EotioD, bur rhat is not rbe Bach style &ar we
wanL

Exanple: Cborde no. 48, Chrlstrs, der ist meio l-cben

e4 bb4
t4 14
c4 d4
eb3 d3

1.1.7.20 Undesirability of tbc arpeggiated style

ln any part, it is uodesirable to follow a skip by anotber in tbe same directioo and bave tbe skips spao
e total intcrval grcaler tban a fifrb.

1.1.7.21 Recommendation oo first chord of cbordes Dot beginning with anacrusis

U a cborale does not bcgin witb an anacrusis, it is desirable to barmonize tbe first note n'ith tbe tooic
cbord.

1.1.7.22 Augmented triad

Tbe augmenred uiad on tbe third degree of a minor key sbould prefcrably be avoided.

1.1.7.23 f,:nking of cbord positions

1.1.7.23.1 Fuodamental position

A cbord in tb'e fuodameDtal position is desirable, ercept wben tbe cbord is a dirninirbed u'iad.

Commenu "It is dcsirable to bave P, cxcept wben Q" rsually uteaos tbe hcuristic is true ilf [P and
Dor o.

1.1.7.23.2 First inversion

A cbord in fint inversion is desirable.

Commeot: It follows tbat sccood invenioos are hss desirable. Howevcr sucb recomoendations are
overridden by tbc clicb€s.

1.1.7.24 f,rnking of cbords by oumber or voices

1.1.7.24.1 Triads

Triads are desirable, ercept wben tbe cunent degree is tbe tr or VII in a minor key, in whicb case
scveutbs are desirable.

Comment: It follows tbat seventbs are rrsually less desirable tban triads. Sucb recommeodarions are
overridden by tbe clicbis.

1.1.7.25 Recor. eodation for avoiding cbanging tbc key too

c4
e4
g3
c3



ln &e fint phrue before tbe fint cadeace, aod during tbe last pbrase, it is uodesirable to leaye rhe
tonic key and ir is desirable ro rerurD ro tbe ronjc kcy.

1.1.7.26 Rccommendation for asserting tbe tonic afrcr a new key is entcred tbrougb V

U a key was entered via the V degree it is desirable ro assen tbe tonic of tbe new kcy irnmediately.

1.1.7.21 Raoking of cbord progressions

1.1.7.27.1 V-L VII-I progressiors

Progressions wbere tbe roots of adjacent cbords produce a relative V-I, or a retative VU-I wbere tbe
I b in tbe fundaoeotal posirion, are desirabte.

1.1.7.27.2 tr-I, IV-I progressions

Progrcssions wbere tbe rooc of adjaccnt cbords produce a relative II-I or IV-I, are desirable.

1.1.7.28 Desirable modulation panen$

I.1.7.28.1 G maj-B maj. and G maj-E maj rype of entry to a new key

Modulations tbat involve a G maj-B maj or G maj-E maj type cbord cbange, wbere tbe second cbord
b tbe V degree of some minel l6.sy, are desirable

1.1.1.28.2 A rnin - G maj (VI-v) tyT,e eDtry ro a Dew major key

It is desiiable to bave a modulation wbere a new major key is encred via \rI-V (by A min. - G maj.
. t)?e prog:ression).

l-1.7 -29 Recornmeodation on avoiding baroonic synoopatio'

It is undesirable to bave an barmonic syncopation \r'itbiD a pbrase (i.e., two ooDsecutive cbords n,irh
equal roo6 cxrcnding from a weak quarter beat to tbe uext itroog quaner beat).

t.1.7.30 Unissons

Unissons are undesirable.

1.1.7.31 Erposed octaves and fifrhs

Exposcd ocutves or fifths are undesirable.

1.1.7.32 Ranking of cbords by doubled note

l.l-7.32.1 Doubling tbe fifrb of a cbord in tbe secoud inversioo

U the curreot cbord bas been assigned the 15 4 degree, it is desirable to double is bass (fifrb).

1.1.7.32.2 Doubling tbe rhird of a diminisbed triad

u tbe current cbord is a diminisbed triad, it is desirable to double irs tbird,

l-1.7-32.3 Doubling rbe root



U tbe current cbord is a triad, $eD it is desirabte to doubte tbe rool or tbe rhird, in case tbe bassDoves by stcp upward and $e cuneDt cbord is minor and rbe curreor positioo is tbe fuodamegralposition (i.e. it is uadesirable to bave a uiad tbat does not bave sucb a doublilg propeny).

1.1.7.32.4 Doubling Oe fifrb

u tbe curreot cbord is a rriad, tben it is desirable ro bave tbe fifrh doubled.

Comment: It follows tbat doubling the rbird is least desirable, excepr, for tbe case oocd above, n,bere
it is as desirable as doubling tbe rool

t.1.7.33 Rccornmendation on avoiding trirones

Triones sounded in tbree Dotes are undesirable in any voice v e {bass, tenor, alroJ.
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2.1 THE VIEWS OF THE FII L-IN PROCESS

Tbe BSL process called the fill-in proccss siruultaneously observes tbe cborale from four somewhat
redundaat viewpoios. Tbe filt-in view observes tbe cborale as four interacdng statc macbines tbat

iump from stat€ to stat€ in locksrep, gcneracing the actual ootes of tbe cborale in tbe form of sus-
pcrsions, passbg notes and similar omameDtatiors. Tbe metodic string view obserues tbe sequence
of pitches of each voice from a purely melodic point of view. Tbe merged melodic striDg view per-
forus a similar funcrion, ercept tbat repeated pitcbes are merged togetber as observed from ir. The
tinre-slicc view obsenes rbe chorale as a sequence of venical tirne-sbces, eacb of wbjcb bas a duration
of an eigbtb note. Tbe pace of all otber vieu's is synchronized uitb tbe fill-io view, each stcp of wbicb
coosritutes a scp of rbe fill-in process. Tbe candidates are genemted by mcans of tbe fill-in view
production rules, tben tbe corresponding zero or trrore itcrns in tbe melodic string and time slice views
are geteratcd by a straigbtforward uenclation from the fill-in atuibutes of a candidate. The absolute
rules of all four vieu's are rced for accepting or rcjecting a candidate, and a list of mixed recommen-
dations from all four views are tsed for cboosing amoDg the possibilides.

2.1.1 Erplanation of tbc pscudo functions and predicatcs of tbe fill-i!, melodic string, merged
mclodic string, and tine-slice views

2.I.I.I THE FILL.IN lfIEW

This view observes tbe cborale as tbe output sequeDoe of four iodepcndent starc macbines (one for
eacb voice). A statc macbine for a voice v reads tbe scquence of skeletal Dotes corresponding to voice
v io tbe chord stseleton u'hicb flows in from tbe cbord skeleton view, and for eacb new skeletal note
from tbe cbord skeleton (spanning a quarter beat), produces the attributes of voice v at tbe weali
eigbtb beat of tbe previous skeletal note and tbe strong eigbtb beat of tbe new skeletd nore, and tben
eDt€6 a Dew state.s Tbe states are suspension, descending acccnted passing note, and normal, and
rcpreseot tbe condition tbat voice is in during tbe metrically stroDg eigbth note. Unaccented passing
Dotcs, aod ocigbbor Dotes do not rcquire a state, since tbey occur on tbe weak eigbth note. Funber
cooceivable varieties of tbe states, sucb as accened 356es.ling passing Dotc, werc not funplemented
for rbe sake of reducing complexity, because of tbeir r.rre occurrencc in tbc cborales.

Tbe primitive peeudo functions fs1 rhic view are as foUows:

Specilication of voicc v for tbe sccond (weak) cigbtb notc of quarterbeat n of tbe chorale. We will
call this eigbtb Dote tbe odd slot of voice v at fill-in step n.

ppodd(n,v): pitcb_type

Tbe pircb of tbe odd slot of voicc v at fillin step n, encoded as 7'octave number+pitch
oaure.

raodd(n,v): accidental_type (flat 
- -1 naturat sbarp)

Tbe accidental of tbe odd slot of voicc v at fill-in step D.

esodd(n,v): boolean

Thc fill-in pnoccss dcs not rcad the output of the drord skcleton proccss dircctly. A rnore convcnient rier', shich is
dmilar lo $c rh)lhrnlcss chord s\clcton vics', but cech of r'hosc itcms sp3n a qu.rtcr notc. b uscd es inpur for fill-in.
Eech stcp of fill-in @nsurncs onc itcm from rhis vics'. This more convcnient ries' is updatcd after each srep of the chord
r\clcton pracss.:nd r pointer to thc rnost reccnt defincd ircn in it is pesscd to $e fiil-in proccss, es fiU-in is schcdulcd
(c.llcd).



True if a Dew noG is struck, false if the previons Dot€ is being continued at the odd slot of
voicc v at fill-in srcp D.

Specification of voice v for tbe first (suoog) cighrb nore of quarrcrbcat o+ t of rbe cborale.
Thb eigbtb mtc will be catled rbe errn slot oI voice v at fill-in srep n.

ppeveo(n,v): pitcb_type
raeven(n,v): eccideoraLtype
sscven(n,v): boolean

Definitioos are like tbc odd slot atrriburcs

starc(o,v): (normal,suspeosion,descending)

Tbe neme of tbe Dew state $at tbe statc machine for voice v enurs during fill-in step n
(afte r seeing rbe s&eletal cbord for quancrbear u+ I ).

Tbc foUowing primitive funcdons of tbe fill-in view only scnre to allow commuaicadon
bctween tbe fill-in view and tbe melodic suing, merged melodic suing, and dme-slicc views,
wbicb are subordioare to fill-iD.

nstas!(o,v): inager

Pointcr to last dcfioed not€+t in the melodic string view of voicc v at tbe bcginning of
fill-in step n. For aDy voice v, mslast(O,v) is 0, and mslasr(u+ 1,,,i is
mslast(n,v) +nsiocr(n,v).

msincr(n,v): intcger

Nunber of itcms tbat are added to tbe melodic suing vicw of voice v during fiil-in step n.
Tbus, for example, tbe new pitcbes added to tbc melodic suing vicw of voice v during fill-in
stcp a are ppp(i,v), i-mslast(n,v),...,Estast(n,v)+msincr(u,v)-1. This range given for i is
oftcn used rc a quanrifier raDge in tbc constraios and beuristics of rbc melodic string view.

msnrlast(o,v): integer
msnriocr(n,v): ioagcr

Lftc mslast(n,v) and msincr(n,v) but for tbe merged melodic suing view of voice v.

slast(o): btcger

Pointer to last defined slice + I in tbe time-slicc view at tbe bcginning of fill-in srcp D.
Lslast(o) is 0, slast(o+l) is 6last(n)+rsincr(o).

sincr(n): ineger

Number of time-sliccs tbat are added to the time stice view during fill-in sup n (typicatly
2' but 3 wbeo n-0). Tbus tbe sequeDoe numbers of tbe pssT rime-slices added to tbe
time-slice view during fill-in srep n bave the range tstast(n),...,rstast(n)+aiocr(o)-1. Tbis
range is often used as a guaorifier range in tbe constrains and beuristics of tbe time-slice
view.
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2.1.1.2 T}IE MELODIC STRTNG VIEW AND THE MERGED MELODIC STRING VIEW

The melodic suing views observe cach individud voice of tbe cborale as a srring of ootes. Ttre prim-
itives for these views allow ns to assert purely melodic restrictions and preferences for eacb view.

Tbere are two scparate views grouped under tbe name melodic suing. Tbe melodic srring view con-
sbs of tbe following primitive pseudo fuoctioos:

Tbe variable i-0,1,... is rsed to indicate the sequence oumber of a oote within tbe ootes
of a given voice.

ppp(i,v): pitcb_type
aaa(i,v): accidenul_type

These represent tbe pitcb and accidenral, respectively, of the i'tb note in voice v.

klt(i,v): pirchname_type

Tbe key of tbe i'tb oote in voice v. Tbe key of a note is tbe key of Oe skeletal cbord in
whicb it is stntck, except for an inessential note on an odd slot, wbose key is tbe key of tbe
skeleral cbord in rbe immediately following quanerbe at.

fff(i,v): boolean

True iff tbe i'tb note of voicc v is struck in the span of a skelcral cbord with a fermara

Tbe merged melodic suing view is simitar tbe mclodic strijog view, ercept tbat repeated pirches are
mcrged into a single note in tbe merged melodic stri-og view. Tbis vieu' is useful for recognizing and
edvising against certaiD undesirable melodic parrems whicb are not aUeviated even if tbere are re-
p"ating notes in the partern. Tbe primidves of tbis view are giveo betow:

pnr(i,v): pitcb_type
anr(i,v): accidental type

Tbese are tbe pitcb aod accideotal, rcspectivety, of tbe i'tb nore of tbe merged metodic
suing of voice v.

Lstart(i,v): intcger

Tbis is tbe startiDg time (in units of eigbt ootes since tbe beginning of tbe firsr measure)
of the i'tb note of $e merged melodic string of voice v. Vy'ben tbere is an anacrusis, all pars
bave '2 as tbe staning time of tbeir first Dote, so rbat saning rime O always coincides u'itb
tbe beginning of tbe first measure.

knr(i,v): pitcbname_type

)



Tbe key of tbe i'tb oote of tbe merged melodic suing view of voice v. The key of a merged
melodic string note is the key of tbe first among tbe melodic sring view notcs tbat it
9OEpresses.

lasthigbcomer(i,v): pitch_type

Tbe pitcb of tbe last high corner seen before notc i in the merged melodic sring view of
voice v. This is a utility atribure tbat depeods only on tbe attributes of itcrns 0,...,i-l in tbe
merged melodic string view.

lbciodex(i,v): intcger

Tbe sequence number of tbe last higb corner seen before note i in tbe merged melodic
suing riew of voice v.

2.1.1.3 THE TIME SLICE VIEW

From this vien', tbe cborale is observcd as a sequeDce of venical timg slic€5, eacb baving tbe duration
of an eigbtb ootc. Tbe time slice primirives indicate wbat eacb voicc is doing at the given rime instant.
This view is used for specifying general barrronic oonstraints and preferences. Rbythrnic constraints
end preferences are abo specified using tbe time-slice view, siDce tbe cborale style that we are mod-
eling bas a simple rbytbntic structure.

Tbe primitive pseudo functions and predicates for this view are as follows:

The variable i-0,t,... is used to indicate tbe sequence number of a time-slice.

pp(i,v): piab_type

7'octave n"mber + pitch name of voice v at time slice i

aa(i,v): accidentd_type (flat--1, natural, sharp)

Accidental of voice v at time slice i

ss(i,v): boolean

True if voice v strikes a Dew Dote during time slice i. False if v continues a pitcb tbat was
startcd previousty. Obviously, (Vv I bassSvSsoprano)[ss(0,v) & (Vi>0x1tr e
taappl ))[F(i+ l,v)*F(i,v) + ss(i+ l,v)]1.55

ff(i): boolean

True iff a fermata is in progress during rime slice i.

es(i): integer

Tbe sequence number of tbe quarterbeat in whicb time-slicc i occurs. Is used only for re-
covering additional propenies of tbe'inre slice i, if necessary.

s [Krslcr ?5] has rbo uscd a sirnilar formrlisrn.



2.1.2 Geoeration of tbe atuibutes for tbe fill-in view

2.1.2.1 Generation of the utility attributes of the fill-in view

U tbe current sap is not tbe first (n>0), tbe utility attributes nslast(n,v), msnrlast(n,v) (for eacb
voice v), and tslast(D) are computed, and tbe melodic suing, merged melodic string, and time-slice
vicws are updatcd in tbe predictable way according to tbe decision made for atrributes of fill-in step
n-1. Otberwise if tbe cunent step is tbe fint (n-0), these utility attributes are set to 0.

2.1-?.2 Generation of tbe soprano attributes

The soprano odd and even slot attributes, and tbe sopmno statc, are copied from input arays which
ile conputcd by a (dearministic) preprocessing of tbe melody ro be baralonized.

Comment: Tbe preprocessor, written io C, accepts as input an ascii encoding of tbe sequeoce of
ootes of tbe cborale melody, in tbe form of fixed-do solfege syUables. Tbe melody mut be in C major
or A minor, witb ao assumed rime signature of "C". Tbe form of the input erpectcd by tbe pre-
prooessor is as follows:

enacrusis <flag>
ronic <pitcb;
fuodprog (intcrval>
cboral,oo (iotcgerl
Voo/o

<cocodinc of_melody>

Tbe anacnsis flag Bust be 0 (meaning no anacrusis) or I (meaning a oDe{uarterbeat anacrusis).

Tbe ronic pitcb must be a notc oame (do or la) immediatety followed (witb no inten'eniog blants)
by tbe octave ouober (4 or 5). Example: la4. Tbe octave number is rscd by tbe Schenkerian analysis
view ro dcarmioe eractly where tbe fuodamental line will rcsolvc.

Tbe fuodprog interval indicates tbe tlpe of tbe Scbenkerian fundamental progression to be searched
for, and can be ooe of the symbols tbird, fiftb or octave. tf this line is omitted, tbe fundamenral
progressioo is assumed !o be fifth.

An ineger must foUow tbe cboraloo keyword that indicates tbe number of tbe cborale.

Tbe cncoding of tbe melody coosiss of a scguence of alpbanumeric oote symbols and otber symbols,
separated by blanks or oewlines. Eacb notc slmbol consisb of a pitch naoe (one of do, re, mi, fa,
sol, la, si), foUowed by an optional acridcntal (# or b), foltowcd by tbc octave number. do4 is middle .
C, sib4 is the B flat a seventb above it, etc.. A quartcrbeat long ootc is indicatcd by a note synrbol,
e.g. do5. Notes takiog longer tbao a quartcrbcat are iodicaad by a ' for eacb additional quanerbear,
e.g. a middle C dotted balf note is indicatcd by do4 ' '. A pair of eigbtb notes is eoctosed in paren-
lbeses, tbtts: (do4 re4). A dotted guarter c4 followed by an cigbtb d4 is indicatcd tbus: do4 (. re4).
To indicate a fernara over a notc, precede it by a !. Sixaentb norcs or rcsts iue Dot accepted by tbe
preseDt version of tbe program.

By defautt, eacb pitcb tbat is sounded in tbe strong eighth pan of a quartcrbeat is raken to be an
barmony Dote, except ir tbe pbrase ending pattem do5 doS si4 ! do5, where tbe second do5 is taken
to be a suspension. To override tbe defauls in rare cllses, e.g. when we do not want a suspension in
lucb an ending, a not€ cao be preceded by one of tbe symbols NORM (meaning tbe coming strong
eigbtb beat is ao barmony oote), SUSP (meaning tbe coming strong eigbrh beat is a suspension), or



DESC (meaning tbe coming stroDg eighth beat is aD acrentcd desccnding passing note), wbicb force
tbe next quartcrbeat to surn io $e oormal, srspension or descendisg stat€, respectively.

Herc is an example input file for tbe CHORAL system, cborale oo. 33, Befiehl du deine Wege:

roacrusis I
tonic la4
cborabo 33
96%
(la4 si4) do5 si4 do5 re5 ! mi5 ' '
rol5 f#5 mi5 mi5 re;5 ! Ei5' '
Ei5 f#5 solS (la5 sol5) f#5 sol5 (' fa5) !mi5
ni5 re5 do5 NORM do5 si4 ! do5 ' '
(mi5 re5) do5 reS mi5 rc5 do5 ' ! si4
do5 re5 do5 si4 si4 ! la4 ' '

2.1.2.3 Generatioo of tbe bass, tcnor, and dto attributes for pirch and attack

Definitions: ln tbe following production rules, the souroe chord means tbe skeletal cbord of
quanerbeat n, tbe target cbord means tbe skeletal cbord of quarterbeat n+ I (whicb is tbe cbord that
b oewly scen during fill-in stcp n). Tbe souroe Dotc for a voicc v during fill-in sap n, is tbe note of
voicc v in the sourcc skeletal chord; tbe target Dote for a voicc v during fill-in stcp o, is tbe note of
voice v in tbe target skeletal cbord.

Comment: Tbe case by case descriptions of tbe possible actions listed belou' are Dot necessarily mu-
ruaUy exclusive.

For eacb of the voices bass, tcnor and dto, the followiog possibiliries are uied:

2.1.2.3.1 Gcneration of odd and even stot attributes wbeo tbe previors state is oormal or wben
tbcre is no pieviors state.

2.1.2.3.1.1 GeoeraUy applicable rule

U tbe previous surte is norzral, tbeo tbe odd slot may simply be bcld and tbe even slot may strike tbe
targct skeleuil Dotc, and tbe noroal state may bc cutered.

2.1.2.3.1.2 Case when souroe and wget are a third apart

U tbe previous state b normal, and tbe sourcc and target sketetat notes are a third apart, tben the odd
rlot may form a passing note htween tbe source aod target, and tbe even slot may strile tbe target
ootc, eod tbe normal srate rnay bc rerained.

2.1.2.3.1.3 Case wben source aod target form a desceoding second

U tbe previous statr b norual, and tbe source aod tbe target skeletal notes fonn a descroding second,
tben tbe odd slot and tbe even slot may bold the pitcb of tbe sourcc Dote, and tbe suspcnsioo state
may be entered. U tbe even slot falls on a strong beat is pitcb must be struck ratber tban held, to
preveDt tbe uogainly dotted qua"rtcr syncopation.

213



(fr)

d5 c5 bb4 a4
a4 94 la4
d4 d4 d4
t#3 93 d3

a4
J#4
c4
c3 d*3

b4
94
d4
e3

Example: (oo.7 Acb Gott von Himrnel, sieb darein)

(")

(")

2.1.2.i.1.4 Case wben target and source form a descending fou'th in tbe bass

U tbe previous state is normal, and the voice being processed is tbe bass, and tbe source and the

t"rg., ,t*.t.,al notes fonn a descending founb, then 6e odd and eveu slots may filt in tbe founb in-

tcrval witU passbg notes, aod tbe descending passiog Dote state may be ent€red'

Example: (Herzlicb tbut micb verlangeu, no' 165)

J#3
(")

(")

2.1.2.3.1.5 Case wben tbe source and target are a descending tbird apan in tbe bass'

lf tbe previous sratc is normal, aod tbe voice beiog processed is tbe bass, and tbe sourc€ and the target

skcletal Dotes forE a descending third, and Ue rarlet bcat does Dot b€gi! a phrase, tben tbe odd slot

oay be betd, and tbe even sloi may strike an accented desccnding passing note toward the target

skeietal note, and tbe desceoding passing Dotc state may be encred'

Example (no. 210 Jesu meine Freude)

(")

(")

g4

f#3

b4
94
d4
g3

d5 d5

94 a4
e4 d4
f$3 e3 tt3

b4
94
d4
93

2.1.2.3.1.6 Case wben tbe rcurce and target are tbe same

U tbe previous state is oormat, aod tbe source Dote is tbe same as the target Dotc tben tbe odd slot

may form an upper or lower neigbbor oote between tbe sourc€ and target' and tbe even slot ntay

suiie rbe targei pitcb and tbe normat srate may be renined. ln tbe case of an upper auxiliary'note'

the cven stot may also repeat tbe odd slot, and the srupension state may be entcred (a rule will enforce

tbat tbe oeigbbor Dote is a oonsonan! cluster in this case). See tbe restrictiors belou'on tbe use of

this easy device, very often abused by unimaginative studeots (and Dot by Bacb) to achieve "eigbth

-are ltrov€FeDt" wheD all else apP€ars to fail.
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Erample: (no. 174, Heut ist, o Mensch, ein grosser Trauenag)

d5 eb5 d5
bb4 bb4 a4 bb4
14 eb4 14
bb3 ab3 g3 13

(")

c5
bM (")
94
c3

U tbe previous surt€ is normal and the source pitcb is tbe same as tbe target pitcb, aod tbe source
cbord is on a stroDg quanerbeat, tbcn the odd aod even slots may strile pirches a thrd aod a second
ebove the sourcc pitcb, respectively, making tbe.(g b a g) pattcrn, aod the descending passing uotc
state may be entered. A sinrilar pattem (a b a g) is a!. r possible wben tbe souroe pitcb is a second
higher tban tbe target pitcb. However, wbeo tbese patterns are cbosen, tbere mwt not be a b-g pat-
rcrn in some otber voice in tbe skeleton (otbern'ise octaves would result).

Erample (oo. 13, AJle Menscben rnllsseD sterben)
notc lbe use of tbe incomplete scventb cbord

z4 EE4 a4
d4 d4 c*4
d3 183 e3 d3 e3 (")

(")

Eranple for sccond pattlm: (oo. 301, O Welt" icb mrss dicb lassen)

ab4 bb4 c5
f4 eb4 cb4
4 db4 d bb3 ab3 (")

t4
c#4
c3
.2

c5
94
cA
e3

12b2b2

Rs3
(")

ab3

If tbe previous state is normd and tbe source pitcb is tbe same as tbe target pitch, tbe alto or tenor
may also jump dour a founh io the odd slot and tben jump back to tbc same note in tbe even slot.

Erample: No. l5l, Herr, straf micb nicbt in deinem Zori

(fr)
a4

t4 (984 I#4) E#4 e4
e4 b3 e4 d4 cA (")

(") ^2

b4

e3

d5
t4
13 14
Rd3

comnent: . nrle will say tbat this latter patrern must (rccur in acconrpaniment to a suspension.
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s4
e4
c4
c3

2.1.2.3.1.7 Case wben tbe source and wget are more tbao a second apan

U the previous state is oormal, and tbe source and the target are more tban a second apan, and (tbe
Eource-uuget interval is not seventb implies tbe cunent voice is oot bass), tben, in case tbe source and
target form an asccnding intcrval, tbe odd slot may overshoot tbe target by a sccood and rbe even slor
may souod tbe target pitcb, and in case tbe source aod urget form a desceoding intcrval, tbe odd slot
oay undersboot tbe target by a sccoo4 aod tbe even slot may sound tbe target pircb, and tbe normal
stat! may be retained. ln case the target is oversbot" tbe suspension state may also bc entered and
tbe even slot may repeat tbe odd slot-

Erample (Jesu meine Freude oo.2l0):

dr4
f#3

(")

(")

2.1.2.3.1.8 Case wbere tbe source and wget are a second apart

If tbe source and target are a secoud apart, and tbe previons surte is Dormal, tben tbe odd slot may
iump a third or a fourth, and tbe even slot may sound tbe targer pitch, provided that tbe even-odd
slos of this voice would not produce parallel octaves witb tbe source and target Dotes of some orber
voice. In the bass, only a downward third is allowed, and only in tbe case wbere rbe sourc€ cbord is
not in tbe fundamental position. Tbe case wbere tbe odd slot and target Dote are a second apan is
ercluded (for not dupl.icating $e candidarcs generated by oversboot-undenboot).

Comncnt: rhic production rute can poendally result io very bold clasbes of inessential notes; and it
gave rise to quia a few constraints for resuicring irs utilization.

2.1.2.3.2 Gcncration of tbe odd and even slots wben tbe previons state is tbe suspension sute:

2.1.2.3.2.1 Generally applicable possibility

U tbc previous stalc is suspensiou, theo tbe supension may be immediatety resolved oD the odd slot,
end tbe eveo slot may strike tbe target pitcb, and tbe oormal state may be enrered.

Example: (No. 22 Ab Jesus Christus io der Nacbt)

(")

(")

2.1.2.3.2.2 Case wben tbe sourcc and targer notcs form a descending third

U tbe previotts state is suspension, aod tbe source and tbe targer Dores form a desce nding third, tbeo
tbe suspersioo Eay be resolved on tbe odd slot, and tbe even slot Day strike ao acceoted descending
passing oote in tbe direction sf the tarfe! and tbe descending passing Dote slare may be enrered.

94
c4
g3

b2

* bb4 a4
94 14 t4 e4 f4
4 bb3 c4
t3 93 a3

c5
94
c4
c3

14

t4
d4
d3
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c5b484
c4
cr ' -b3
C3

Example:
(no. 155, Herzlicb [eb hab icb dir, O Hen)

e4 d4 cA b3 a3 (")
a3 e4 e4
I#3 gt3 a3

(")

2.1.2-3.2.3 Case wbcn tbe source and target form a dcscending secood

U tbe previous state is suspension, and tbe source and tbe target form a desceoding second, tben the
rupension may be resolved on the odd slot, and tbe even slot may repeat tbe odd slot, tbus bcgioning
r sccond suspension, and tbe suspcnsion starc may bc retaioed.

Erample: (no. 3 16, Seelenbrautigam)

(fr)
c#5 b4 .4

b3 13 63 d4 (")
e3 e3 t2

(")

Also sce tbe ercerpt from no. 22 gSved above.

2.1.2.3.2.4 Case wben the rcurce and target are tbe same

U tbe previous statc is suspension and tbe source note is tbe same as tbe target note, tben the sus-
pension may be held tbrougb tbe odd slot, aod resolved in tbe even slot, aod tbe norslal state may
be entered

Example: (No. 33 Befiebl du deine Wege)

14 e4 e4
d4 d4 e4
13 a3 e3
Re383.2

(")

U tbe previous surtc is srspension and tbe source nole is the same as the target notc, then tbe odd slot
may undersboot tbe target note by one step and tbe suspensioD Eay be resolved oD tbe cven slot, and
tbe sormal state may be entered.

e4e4e4

d4
a3 (")
f3
d4

2','1



Example: (No. 9 Acb Gott, wie mancbes Herzeleid)

E#4
e4
b3
b3

e4
e4
b3
#3

b4
f#4
gt3

f#3 e3

g:4
e4
b3
E#3 a3

(")

2.1-2.3.2.5 Continuation wben tbe previous state is tbe descending passing Dot€ state.

lf tbe previous surte is descending passing note (i.e. tbe prer"ious even slot was a se@nd above the
Eource pitcb), theD the odd slot may souod the source pitcb, and tbe even slot may souDd tbe target
pitch, and tbe normal state tnay be cntered.

lf tbe previous statc is descending, and tbe source aod wget form a descending secoDd, then $e odd
slot may sound tbe source pitcb, and tbe even dot may repcat tbe sourcc pitcb and the suspersion
surte may be eotered.

U tbe previols sut€ is desccnding and tbe souroe and wget form a desceuding third, tben tbe odd
slot may sound tbe source pitcb and tbe even slot may continue tbe desccoding scalar progression,
and tbe desccoding statc Eay [g lgteinsd.

2.1.2.4 Assignmenr of accidentals to generated pitches of tbe bass, tcnor and dto.

Assignment of accideotals to notes of tbe bass, teoor and alto proceeds as follows: wben tbe pitcb
of a fillin view note is assigned from tbe sourc€ or target note of tbe skeletal cbords, its accidental is
lbe sarne as tbe eccidental of rbat skeletal nore. If a new Dote is created by tbe fillin view, tben it can
bave eny of tbe possible accidentals, depending on tbe pitch of tbc notc (f#, g#, d, d#, or b-flat).
Tbe foUowing restriction applies, bowever: In ei$er tbc odd slot or tbe even slot, tbe same pitcb
canoot sinultaoeously occur dtered in one voice and undtered in anotber.

2.1.2.5 Updaring of the melodic string, merged oelodic string, and time-slice views

Tbc melodic string aod merged melodic string views for eacb voice, and tbe time-slice view, :ue up-
dated in a predictable way according to tbe attributes of the fill-in view tbat bave jtst been decided
upon. Nore rbat tbe updating done io tbe views subordinate ro fill-in because of this paragrapb has
tbe purpose of a preview, and will always be uodone. After tbe best assignment to the current fi[-in
ettribures is successfully chosen based on beurisrics applied on tbese previen's of the subordioate
vie,ws, tbc subordioate views will be updated again according to tbc cboiccs of tbe current fill-in step
rt tbc beginning of tbe Dert fill-in st€p.

2.1.3 Gcoeral constraints as seeo from tbe fill-in, melodic string, merged melodic striDg, and time-
stice views

Tbe associatcd vicws are givcn in parentbeses.

2.1.3.1 Tbe pitcb patteru r y x y (merged oelodic string view)

Tbc pitch patkm r y r y (disregarding repeats) is uoacceptable ercept wben it is enclosed in a se-
quence w r y r y z wbere w-x-y aod r-y-z are eitber botb ascending or botb descending progressiors.
U tbe voice is tbe bass, both w-x-y and x-y-z Eust be scalar progressions.

a4
t#4
d*4
63

d*4
a3
I#3
(")

I*4

ci4
a3



c5 bM
g4 14 g4
c4 e4 d4 c4
e3 c3 d3 e3

d5 c5 b4
t4 94
d4 d4
tt3 93 t3

Comment: Bacb generally follows rhis rule for bis bass accompanirnents, so do tbe l6-l?th ceDtury
oooposers of tbe Lutberan cborale melodies.

Erample of tbe crception (No. 33, Befiebl du deine Wege)

(fr)
t4
T4
c4
f3

(")
14 eb4...

But in the inner voices Bach sometimes feels less coocemed about melodic constraints. Obsen'e the
alto line of :ce trcginning of tbe foUowiog chorale, perbaps designed oD purpose to fit rhis long breatb
nrelody, whicb iscU also contains a violation of tbe rule. (AIso notice tbe neigbbor note pattero (g2
l#2 92) in tbe bass wbosc only purpose scens to be to sustain the eigbtb notc movement). Hon'ever,
tbe piccc as a wbole sounds fine.

(No l85,Icb danlie dir, Herr Gott" in deinem Tbrone)

t4
d4
R
bbz 

^2

94 I#4
eM d4
a3 (ag
c3 d3

94 a4 94
eb4 d4 eM d4
bb3 4 e4 bb3
g2 92 t;2 92

(fr)

94
d4

bb3) c4 bb3
92

2.1.3.2 Resuictioo on repeatcd higb coraers (ocrged melodic sring)

Wben a cenain pitcb occurs as a higb eoroer (a locd marimum) in a voice otber tban tbe soprano,
tben tbe same pitcb must Dot have occured as a previors high comer in tbe same voice, unless tbe
rtarting times of tbe two higb comen are Eorc tban 8 quartcrbeaB aparl Tbe piecc is assumed to
bc preccded and foUowed by a very low pitcb for tbe purpose of detcrmining if tbe fint and last notes
erc higb oomers.

Comment: this consuaint is very strict (and probably exucmely difficult for humans), but it belps to
etsure good melodic motion in tbe ioner voiccs. tt is certainly Dot always followed by Bacb in tbe
inner voices.

L1.3.3 Rcsuictioo oD rcpeated ootcs (melodic saing)

No note cao bc rcpeatcd more than tbree times b any voice otber tban tbe soprano.

Commeot: thiq rule docs oot apply near tbe very end of tbe cborale bccause of a peculiarity of rbe
way it is coded.

2.1.3.4 Restriction on oelodic iotervals (melodic string)

Melodic inarvals larger tban a sktb are Dot allowed, witb tbe erception of tbe octave skip.

Comment: Tbis is a rcpetition of a rute used in tbe cbord skeleton view; but sevenths are Dot allou'ed
(scventbs io Oe skeleton must bc fiUed-in witb an octave skip).
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2.1.3.5 Absolute lisris for range of voices (melodic striDg view)

Pitcbes must remain witbin absolute limits (namely c2 and c6).

2.1.3.6 Tritones (melodic string view)

Tritooes spanned in tbree Dotes must be followed by a sap in tbe same directioo in any voice otber
tban tbe sopra$o or bass. lu the bass, tritones spanned in three notes are forbidden. Tritooes tbat
8rc spennsd in four notes must eitber be continued by a sap in Oe same direction, or must be pre-
ceded by a sup in tbe seme directioo, in tbosc voiccs otber tbao tbe soprano.

2.1.3.7 Restricdon on bow to cnd a chromatic r.'rotion in tbe b;rss (merged metodic string)

In tbe bass, an ascending (descending) cbromatic motioD Dust continue upward (downu'ard) by srep,
with at rnost one note iotervening between tbe cbromatic modoo and is stepwise cootinuarion.

Comment: sequeoces sucb as e313 f33 e3 d3 are unacccptable. c3 f3 t:3 E3, and e3 t3 f:3 d3 93
ere alrigbt, bowever.

2.1.3.8 Restrictions on tbree consecutive skips in tbe bass (melodic string view)

In tbe bass, three consecutive skips are allowed only if (one of tbe skips is a third, or tbe pitcbes of
a pair of Don-€orsecutive ootes among tbe four Dotes constituting the skips are equal (mod 7)).

Comment: Some rule bas to be assened to conditionally prevent repeated wide skips in tbe bass. The
condidon abut a pair of tbe culprit ootes being equal (mod 7) was inspired from tbe follou'ing ex-
emple:

No. 21, Als der gtttige Gott

z4
(Ii4 e4)t*4

d4
d3

2.1.3.9 Augmcntcd and diminisbed intcrvals (mclodic suing view)

Augmeotcd and diminisbed intcrvals are Dot allowed, witb tbe exceprion of tbe diminisbed interval,
wbicb is aUowed only if it is a diminished filtb, or diminisbed founb, aod is followed by srep in the
opposite djrectioo.

2.t.3.10 Seveorbs or ninths spaoned in tbree nores (melodic suing view)

A scventh, a diminished or augmeoted octave, or any intervat greater than or equal to a uintb cannor
be spanned in three notes that move in tbe same direction. However. tbis rule is not effective in tbe
bass wben tbere is a phrase boundary amoDg tbe tbree ootes. An augmented octave cannot be
spanned in tbree Dotes eveD wben tbere is an intervening phrase boundary.

(fr)
ga
d4
b3
92

c4

94 a4 b4
e4 94 t#4 94
b3 d4 d4
e3 d3 g3

d4
b3
g3
E3
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Erample of tbe erccption wben rbere is a phrase boundary:
(no. 156 Herzlicb lieb bab ich dicb, O Hen)

c5
(fr)

d5 d5 IE'

14 94 t4
d4 e4 

'14

bb3 c4
bb2 t3

T4
d4

4 bb3 e3
c3 d3

*4 b4 a#4 *5
?*4 f:3 ft4 t#4
63 b2 ti3 *3 (")

2.1.3.11 Forcing suspensioo iD V-V-l cadeoce (fill-in view)

If tbe target cbord is immediately before a pbrase ending, and is degree is V, and il the source cbord
and the target cbord have tbe same root, aod both tbe source and wget chords are in tbe fundamental
position, and if in tbe source cbord tbe skeletal note of tbe soprano does not souod tbe thjrd of tbe
chord, tben tbc founh of tbe source cbord sbould bave been srspended and sbould be resolved on tbe
curent even sloL Tbe suspeosioo must occur in a voice other tbao tbc bass.

Comment: Not srspcoding tbe founh in a V-V-I cadencc souods bad.

2.1.3.12 Restriction on repeating (eigbtb eigbtb quarter) partcrns (fill-in vicw)

Tbe rbythmic pattcrD (eigbtb eigbth quancr) beginning on a strong beat cannot bave rwo consecutive
(rccurrenc€s in any.voice otber Oan tbe soprano.

Tbe global rbytbmic partem eigbrb-eigbth-quarter cannor occur rwicc in a row.

2.1.3.13 Restrictioo on (eigbth eigbtb quartcr) pattems in consecutive phrase beginnings (fill-in
vicw)

Two consecutive phrases cirnnot botb begin u"itb tbe rbythmic pattcrn (eigbth cightb quarter) in tbe
bass, wbcre the pattcrus stan oD a strong quartcrbeat

Comment: some melodies tcnd to invitc the cigbtb-cigbtb-quaner pattem beginning on ao accented
quanerbeat" e.g. consecutive bass phrases stan wirb tbis patrcru in Bacb's baroonization of cborale
no. 75, Du, O scb6nes Welrgebiiude. Similarly, @Dsecutive (eigbth eighrh quarrer) rhlrhrns occur
botb in tbe bass and io tbe global rbythm of tbe following example, tbrs violating tbe two rules given
tbove:

Cborale no. 13l, Hen Christ, der cinig Gors Sohn

T4
c4
13
R

94
e4

Nevertbeless, we felt tbat sucb consecutive ryhthmic panerns are objectionable for a oomputer.

2.1.3.14 Rule about rhe dotted quarrer rbyrbn (fill-in view)

Within a pbrase, if tbere is a pattern of tbe form (x quaner x eightb y eigbth), tbat starts on a srrong
quancrbeat, tbeD it sbould bave been (x dotted quaner y eiah'h\

28r



Comment: this rule bas been deleted from tbe fill-in knowledge base and is implemenred in tbe
Prilting routine, wbicb forccs dotad quaner - eightb ryb&os wbenever tbere is a cbance .

2.1.3.15 Restrictions on (rctaves separated by one or two eigbtb bcas (time-slice view)

Any giveu pair of voices canDot produce octaves (unissons) separated by ooe or more eightb beas;
if ooe cigbtb beat iotervenes bctween lbe octaves, or if two cigbtb bcas iotcrvenes betn'een tbe
octaves and tbe firct octave is on a strong cigbth beat-

Comment: Distant octaves sound more objectionable tbaD distaot fifths, so we made a rule about
tbem, but left rbe distant fiftbs intact-

2.1.3.16 'Restriction oD aD upward jump in tbe odd slot followed by a wide downward jump (fill-in
view)

U an upward jump to an odd slot is followed by a downward jump to tbe even slot, the second jump
sbould be witbin a tbird.

Comment: wben tbe second jump is oot witbin a third, tbe effect is congested.

2.1.3.17 Restriction oD Dotr configuratioo producrd by a jump in tbe odd slot (fill-in view)

Dcfinition: A consonant chstcr is eitber a triad or seventb, or ao incomplea uiad witb tbe fiftb
rniqsisg, or an incompletc seventb witb tbe tbird or fifrh missing. However, tbe second inversion of
a triad or seveDtb, or irny inversion of an incomplete chord that gives tbe inpression of a second in-
version, is not a ooDsonaDt cluster.

A voicr in tbe normal state can jump to an eigbtb note i.o an odd slot only if tbe odd slor is a coDsonant
clutcr. U rbe previous state is normal, and tbe the odd slot is attaioed by jump, or if (the odd slot
Doves up by a sccond as in an upper ncigbbor Dole, aod tbc Dew state is a suspeusion state Ga f4 14
c4 parurn) or a desccnding statc (e414 e4 d4 patam)), tben tbe odd slot must be a consonanr clus-
l l t .

2.1.3.t8 Rule oo the preparation of supessions via an inessential ootc (fill-in view)

Wben a suspension is prepared by an inessential note at tbe odd slot, tbe odd slot must be a complete
c,hord

2.1.3.19 Avoiding ocurves producrd by suspcnsions prepared by an inessentid oote (fill-in vien')

U a suspeasion is prepared by an ioessential note sounded at tbe odd slot, tben tbere Dust be no other
voice tbat sounds tbat preparadoo pitcb at tbe odd slot and desceods by stcp on tbe even slou

Ll.3.2O Restriction on (d4 a3 d4) eigbtb-nore pattero (fill-in view)

Tbe eigbtb-noe pattern (d4 a3 d4) in tbe tcnor or alto may only be used to accompaDy a supension
tbat is a quarrcr notc long.

2.1.3.21 Restriction on voices tbat jump simultaneouty oo tbe odd slot (fill-in view)

If any two voices jump simultaneously on the odd slot, tbey Bust oonstirute parallel thirds (or tenths)
and must individuaUy move by tbird.

2.1.3.22 Restriction oD rcpeating tbe resolution of a suspension (fill-io view)
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Wben an accentcd passiog oot€ or eigbth note loDg srspension reaches its resolution in tbe odd slor,
and if rbe foUowiog cveo slot oore does not mol'e upward, aod does not sun a new suspcrsion by
EPealing tbe odd slot in tbe even slot, and does not become tbe scveotb of a seventb cbord on a
stroog tatget quartcrbeat by repcating tbe odd slot in the even slot, tben it must move downward by
stcp or thfud. If it moves downward by thir( it must bc moving dowu o rbe fiftb of the rarger cbord,
rad this fiftb ottst bc a pcrfcct fiftb, aod tbe rooB of the source aod target cbords mwt produce a
trlativc V-I or VD-I pattern

Comglent: repeating tbe rcsolutioo of a supension on tbe immediately follon'ing eigbrb bear is
uDgeinly, crcept wbeo a Dew suspension is started.

2.1.3.23 Doubling tbe leading note (fill-in view)

U any Dote is stntck in tbe odd stot, and tbe source cbord does oot coutain a doubting of tbe leading
notc of tbe kcy of tbe source cbord, theo tbe odd slot cannor cootain a doubling of that leading note .

U any notc is stnrck in tbc odd slot, tbeo tbc odd stot canoot conr2in a doubling of tbe sbarpened
fourth of tbe key of the sourcc cbord il it is a major ley, or a doubling of tbe sbarpcned sixtb of the
tey of tbe rcurcc cbord if it is a rninel lst.

2.1.3.24 Omamenting tbe lcading note (fill-in view)

U tbc steletal cbords are VII-I or V-I, and if tbe leading Dot! in tbe skeleron does not go to tbe ronic,
tben it is forbidden to omanenr tbc odd slot of the leading norc wirb a jump.

E:ample:

bad: good;

2.1-3.25 Avoidiog liioear dcscent from leading Dore iD cadeoces (fiU-in view)

In tbe last two cbords of a phrase ending witb a perfect cadencc, tbe tcading uote should not desccnd
by linear notioa !o tbe dorninant i! aD inncr voice.

Coorrrenu berc is an example of a rare violation of rhit rule:

No. t7, Allein Gort in der boh sci cbr

(fr)
e4 b4 a4
e4 z4 g#4 f#4 c4
e4 (d4 eX4Y4 c4
c*3 A e3 

^2

This rule was based oD a suggestion b't' rrr^qich 84].

(fr)
d5 c5
94 94
b3 e4
g3 c3

(fr)
d5 c5
94 94
b3 14 e4
g3 c3
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2.1.3.26 Restrictioo on omamenling tbe preparatioo of a ser.nth (fill-ir vieu')

Wben a particular voice retains the same pitcb in between tbe sourcc and target cbords, and tbe target
cbord is a seventh, and tbe retained pitch souods tbe seventb during tbe target cbord, then tbe odd
and even stoB of tbe voice preparing the scventb must sound tbe sarne pitcb, and tbe current state
of tbat voice must be normal

2.1.3.27 Restrictions oD seveDtb cbords produced or orDameDted Orougb inessenrial ootes (fill-in
view)

If the source cbord is aoy seveDtb, tben tbe scventb cannot bc doubled in tbe odd slot.

U ao odd slot pircb configuration produces a (possibly incomplete) selentb cbord, tbat is oot present
in tbe cbord skeleton, and not(tbe souroe and target cbords have tbe same root" and tbe root of tbe
cbord in tbc odd slot is eitber tbe same or a second above tbe root of tbe source cbord), aod not(all
voiccs rbat strike in tbe odd slot are passing Dotes tbat immediarely reacb tbeir uuget note in tbe even
slot), tben tbe scventb of tbe odd slot chord must eitber resolve immediaaly on tbe even stot by de-
scendirg motioD, or Dust sl'an a suspension.

7-8 and 9-8 erron are forbidden: U tbere is a (possibly incomplete ) scventb cbord in tbe odd slot, and
some notc of tbe odd slot is struck, and tbe seveoLb of tbat seventb chord either moves dosn isrme-
diatcly by sap or entcrs a suspersion state, tben no root of tbat seventb caD move don'n by third (or
up by sixth), or rrove down by step to an acccnted descending passing Dote. AIso, if rbe root of the
scventh is tbe same as tbe sourcc chord root, then no root of tbe source cbord occurring in a voice
not ooDuining tbe seventb can move do'em by third (or up by sixtb) to reacb tbe target chord.

2.1.3.28 Filling in the first inversion of tbe V in a V-I cadence (fiU-in view)

During a V-I cadeoce (possibly baving a tierce de Picardie in the I) wbere tbe V is in tbe first inversion
in thc cbord skcleton, and wbere tbe notcs of tbe rcprano in the souroe and target cbords do not move
by dcscenrling fiftb, tbe bass Eust desceDd o tbe root of Oe V during rbe odd slot and must rise lo
tbe root of tbe I in tbe even slor An exception to this rule is permitad wben tbe root of the first in-
versioo of V ls approached by (a descending founb or a larger descending interval, or an asccnding
cbromatic inarvd), and wben tbe current pbrase is not tbe l:rst phrase.

2.1.3.29 Forcing dominant seveotb in a V-I cadencc amoDg abrupt oodularions (fill-in vieu')

U tbe source and target cbords produce a V-I cadence at a pbrase ending, and tbe cbord preceding
tbe source chord (tbe presouroe cbord) is in a key different from tbe rcurcc cbord, aod it is Dot the
case tbat (tbe presource cbord bas no accidentals foreign to rbe tey of the source chord, or tbe pre-
sourc€ cbord can be construed as tbe IIId degree of tbe key of tbc source cbord and not botb the
presource and sourcc cborG are in rbe fundamental positiou, ortbe presource cbord can be coostrued
s tbe IIu or fVu degree of tbc key of tbe source chord), aod if tbe source cbord is not a dominant
lrvcoth, tbeo tbe scventh of tbe source V cbord must be sounded by some voice in the current odd
sloL

Commeot: wben tbe V-I cadence is approacbed througb abrupt modulations, sounding tbe dominant
eeventb belps to establisb tbe cadence key bettcr.

2.t.3.30 Filling in tbe submediaDt-tonic :NceDt in a tr-I progression (fill-in view)

Wben tbe source aod target cbords make a II-I progression in a major tey or a IIu-l progressioo in a
rninos key, and tbe fiftb of rbe Il Eoves a tbird up to tbe root of tbe I, tben tbis $ird must be filled
iD witb a passing note (so that a VII chord may be sounded at tbe odd slot).



2.1.3.31 Resuicdons on pbrase beginning5 (fill-in view)

Pbrases Eust begio with aU voices in tbe normal state.

2.1.1.32 Ornamentations in between phrases (fill-in view)

No eigbtb Bot s can bc filled io between phrases.

2.1.3.33 Restriction on pbrase endiogs (fill-in view)

Tbe phrasc mwt end with all voices in tbe nornd state.

2.1.3.34 filling in the chromatic morion in tbe skeleton (fill-in view)

A chromatic slotioD canDot bc filled iD witb a oeigbbor note.

2. t.3.35 Cboice ef 3psidenr2l< for notes generated by tbe fill-in proccss (melodic string view)

For all voiccs (including tbe soprano), tbe accidental of a Dote Eust conform to is prevailiog ke1'.
For a rninor key, tbe sharpcned sixth and tbe flattened seventb of tbe key is dlowed (restricrions are
listed below).

2.1.3.36 Rules oo tbc sirtb and scventb degree of melodic minsl (6s1ged nelodic string view)

For all voices (including tbe soprano), wben one of tbe last three norcs is a sbarpened sixth n'ithjo a
minor key. tben there exiss a patterD amoDg tbe table of pattcros given below, sucb tbat all notes
preceding f#4 in tbe pattern matcb tbe music, aod f#4 oatcbes tbe sharpened sixth, and eacb norc
following fi4 i! tbe pattcru eitber Eatches the muic, or tbe oote of tbe music is in a different key
tban rbe original minor Ley in whicb tbe sbarpcned sixtb appcared. (Notc rhet tbc key of a note in
tbe merged mclodic suing view is taleo to bc tbc key of tbe first oore among tbc melodic suiog view
notcs Oat it compresscs.)

As usud, b rbc tables of pattcras below, a ' matcbes anything.

$fi4
gt4
e4
914
gE4

For all voices (iocluding the soprano), if ooe of tbe most receot 4 distinct mtes is tbe flatrcned sev-
cntb of a mioor key, tbeo tbere exists a patkm among tbe table of patterns given below, such that
ell notcs preccrling 94 in tbe patten matcb tbe nusic, and 94 Datcbes tbe flaucoed scveDtb, and eacb
notc following g4 in tbe pattcrn eitber matcbes tbe music, or tbe note of tbc mrsic is in a different
lcy than tbe original minor kcy il whicb tbe flattcned seveDrb appeared.

t4 e#4 t#4
t4 gi4 134
14 E;4 Is4
t4 94 It4
' e4 l#4

.494t4"
c4 94 ti4 gH4 z4
z4 94 I#4 g#4 e4
1494'"

e4
e4
a

a4
a



2.1.3.37 Restriction on approaching a unisson (time-s[ce view)

Uni.sons canDot be approached by sap in oblique motion, except wben botb voices srrike tbeir note
et tbe poirot of tbe unisson.

2.1.3.38 hevention of congestcd eigbtb note clusters (fill-in view)

U three or more voices strike a notc at tbe odd ti.oe slice, tben tbls odd slicc Eust constitute a chord,
or, each voicc tbat striles a Dotr io tbe odd slot must bave a previons state tbat is normd. and must
haTe source aod wget Dotes tbat are a tbird aparq and must sound tbe target Dote iD tbe even slot in
tbe oonnal sute, aDd must sound a passing Dote in tbe odd slot-

Comment: Tbe cascs wbere tbree or more voices strike a Dote r.t tbe odd slot ara rare in tbe panicular
cborale style we are trying to model. But, even in a more coDlr:st€d and derse chorale style, as in the
example below, Bacb tends to abide by rbe rule given above:

(No. 140, Herr, ich habe missgebandelt)

z4
t4 94
e4 d4
c3 b2

(!)

d5 c5 b4
.d4
g#3
e2

a4
c#4
e3
zz

b4
e4
a3
c3

t4 e4 e4 f4
c4 b3 a3

^2 
g*2 z2 d3

a5 a5
d5 a4
f4 e4
t3 e3 (3 63

(fr)
d5
a4
t4
d3

e4
c#3

a5
d5
l4
Rc3

(!): thi< odd slot is an ercePtion

If more tban one voicc sounds simultaneous suspensions or descending passing notes on the current
even slot, tben tbe cureDt cveo slot cennol bear a cbord wbose roor is a founb above tbe root of tbe
target cbord.

Comnent: siruultaneous suspensions/desccoding DoEs can make a cbord of tbe chord skeleton lose
is intended identity. Example:

Weak: Bettcr (notu'ithstanding tbe paraUel 9tbs):

a5
a4

d3
(")

U any suspension or descending passing note sounded in tbe curent even slot is a perfect fourtb (mod
octave) above tbe bass of tbe target chord, tben at tbe current even slot there cannot be a ! cbord
configuratioo.

2.1.3.39 Resolution pitcb of a supension beard above tbe srspension (fill-in vier')

The target notc of a suspension cannot occur in aootber voice above the voice cffecting the srspen-
sion-

(fr)
d5

"4t4
d3

2E6



2.1.3.40 Resolution pitcb of a suspension beard below tbe supension (fill-in view)

U tbe target note of a suspension occurs below tbe suspeDsion, tben $e target Dote must be at least
a nintb below tbe supensioa Tbe bass and EDor are exempt from this rule, aod can producc a sus-
pended sccood.

Comment: Thc srspended second betweeo the teoor and bass is a common erceptioo to this nrle, but
the bass pan could actually be sung aD octave lower io tbis case, as indicarcd in C.P.E Bacb's intro-
duction to tbe 1765 Birnstiel Edition of tbe chorales. Sce no. 316 above for an erample of tbis cr-
ccptioo.

2-1.3.41 changing tbe chord oo tbe resolurion of a suspersion (fill-in view)

U rbe previous state is stspension, and tbe suspension lasts one full quartemote, theo is resolution
must be on a cbord whose root is eitber tbe same or a third below tbe roor of tbe previors oze. l!
tbe roots are unequal, tbe filtb of the first cbord crnnot be suspended (since tbeo tbe first cbord
would lose is idcnriry).

In any voicc, il tbe previous state is tbe desending or suspension state, and $e resolutioo is sounded
b tbc odd slot" tben (fte odd slot must be a uiad, or a possibly incomptetc seventh, and rbe root of
the cbord in tbe odd slot must eitber be tbe sarne as tbe root of tbe source cbord, or it mrrst be a third
below tie root of tbe sourc€ cbord) or (tbe previors state of tbe bass must be normal and tbe bass
mtst souod ao asccnding passbg Dor€ in rbe crwent odd slot).

comment: t1p 25gssding passing note in tbe bass alleviates tbe ctash in tbe odd slot, so, for example,
tbe following is acceprable:

No. 57, program's barnoonization

(fr)
M
g#4
e4
e3

2.1.3.42 Quartcr bear long srspeosions in rbe bass (filt-io vicw)

ln tbe bass, a quaner beat long supcnsioo is uot allowed.

zl-3.43 Rbythmic ooDrlxt of quarur beat long suspensions (fill-in view)

If th previolls state is suspensioo, and tbe suspension is resotved on tbe even slot instead of tbe odd
slot, tben the sourcr beat must be strong and tbe target beat must be weak.

2.1.3.44 7-t crron causcd by quarterbeat long suspensions (fill-in view)

A quarterbeat long stspension must not carre a 7-8 error: if tbe resolution of tbe supension is dou-
bled in tbe target cbord, tben tbe secood note tbat sounds tbe resolution in tbe target cbord cannor
bc approacbed by a downward third (or upward sixtb) skp in is skeleral oorcs.

2.1.3.45 Resolution of supeosion, :pared by a sbon inessential oote (fill-in r.iew)

c5 c5 d5 c5
94 c5 94 14 e4 f#4
d4 c4 94 b3 c4 d4
c3d3c3B93a3

(")

d5
94
e3 d4
b3

281



Wbeo tbe previots state is suspension, and tbe preparation of the superxion is an eigbrb Dote long
rnd is struck in tbe previors odd slot, and $e previors odd slot note is inessential (i.e. it does not
bclong to tbe skeletal cbord preccrling tbe source cbord), tben tbe suspeosion must $c resolved im-
mediauly in the currenr odd slor-

2.1.3.46 Prcvcntion of ungainly fifrbs or founbs resutting from supeosion decision io previous
fiU-in sap (fill-io view)

In aoy voicc, if tbe previots state is supension or desceodiog, aDd tbe stepwise dowoward resolution
is souoded in tbe odd slot, tben this voice canDot produce filtbs witb some otber voice in the previots
even aod curent odd slots, aod this voice canoot produce fourtbs u'itb some otber voice wbose pre-
vious state is also desceoding or suspension.

2.1.3.47 Forced suspensioos imposed by clicbi patren$ (fill-in view)

It is mandatory to impose panicular states (nonnal, descending, suspension) on cenain notes of
ccnain clicbi parcms, if tbese states are specified as being DaDdatory by tbe information flowing
from rbe cbord sketeton view. (See tbe explanarioo for rbe primitives relared to Oe c[cb6s in tbe
cbord skeleton view).

2.1.3.48 Counterfactual beuristic for suspension of rbe bass (fill-in vicw)

U tbe sourcc and target cbords are in tbe middle of a phrasc, and if tbe sourse cbord quartcrbe at is a
weak beat and if tbe sourc€ and and sourc€ -l quanerbcats did not bavc any cightb nor€ movemeol
et all, and if tbe sourcc cbord is tbe fint inversion of a major triad or a dominant seventb, and if tbe
bass of tbe source cbord could bave been suspeoded, tben tbe bass of source cbord sboutd bave been
supeoded, and the supensioo sbould be resolved on rhe weak eigbtb note of tbe sourcc quanerbeat.

2.1.3.49 Consecutive octaves and fifths by parallel or coDtrary Eorion (time-slice view)

Consecutive octaves (unissons) and fiftbs (twelvetbs) by parallel or oontrary Eotion are Dor tolerated
betweeo any of tbe pars. However, tbe following are erceptions to tbis rule for tbe case of fifths: if
tbe sccond fiftb is diminisbed, and tbe pans move by desccoding step, or il tbe first fifrh is diminisbed,
end tbe parts move by ascending step, and tbe second fiftb is at a phrase ending, and tbe voices in-
volvcd are tbe soprano and one of (alto or tcnor), or if tbe fifths occur in tbe penultimate quarterbear
of a pbrase, and tbe sopriuo bas a descending anticipation pattem (a4 94 g4), and tbere are perfect
fiftbs between tbe soprano and (dto or tenor), and the lower voice of tbe fiftb sounds a (d4 c4 b3)
patt€rD, or if tbe voices move by stcp, and tbe sccood fiftb is augmeored.

Examples for tbe first two exceptions were given in tbe cbord skeleton vicw. Exanrple for the rhird
type of erception:

(no. 383, Werde muntcr, meio Gemuhte)

.94
I#4
d4 c4
d]
(")  (")

94
d4
bb3
92

a4
94
eb4
c3 e2

bM
94
bb3
eb3 d3

(")

(")

Bacb rsually mollifies this clasb of fifths by nriting dorred eigbrb and sixteenrh in tbe alro.

2.t.3.50 ParaUel seconds (time-slice view)
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Parallel seconds 3sd ninlbs are forbidden, wirb tbe erccption tbat parallel nioths are allowed from a
wcak o a stroog eigbtb beat-

2.1.3.51 Exposed sccoods (time-slice view)

A second approacbcd by parallel motion must h prepared as foUows: if tbc voiccs are irgctDding, tbe
bwer notc of tbe sccond inan'al must bc sounded in the upper voice irnmediaaly before the second
is attackcd, aod if tbe voices are descending, the upper ootc of tbe sccood inarval ultst be sounded
b tbe lower voicc imoediately beforc tbe sccood is atuckcd.

Comment: Tbe first example in tbe following is tolerable becarce oDe Dote among the ootes forming
tbc sccond is beard immediaaly prior to tbe attacking of tbe secood.

Good:
e4
d4 c4

b4
E*4

b4
c5rr ' -

cA
b3 a3

Bad:
c5
94

94
d4 e4

z4
c4

d4 e4 d4
E3 a3

2.1.3.52 Seconds in tbe odd slot approacbed by coDtrary motion (fill-in view)

If rwo immediaaly adjaceot paru (like alrc and soprano) approacb a sccood inerval by cootrary
Dotion in tbe odd slot, tbcn this sccond Dust be augmentcd-

Comment: A second attacked by contrary motion in tbe odd slot sounds barsb. For example:

eA
b3
(")

2.1.3.53 Exposad octaves and fiftbs introduced by an ioesscntid note (time-slicc view)

Exposed (rtaves (rrnicseDs) or fiftbs (twelvetbs) where a Dote tbat constitutcs tbe octave or filtb,
or a Dote that immediately precedes a Dotr tbat consrirutes tbe octave or fifth, is an ioessential note,
are forbiddcn, clcrept wbeu (one of tbe parts moves by step, and tbc intcn'al is not an unisson, and
(tbe voices arc soprano and bass implies tbat the interval oocurs at a phrase cndiog)). For tbe case
wben the lower pan Eoves by stcp, and tbe inten'al is ao octavc, lbe notes constituting tbe octave
Etust h esscnrid.

2.1.3.54 Restrictioo on exposed octaves tbat produce a 7-8 or 9-8 enor (time-slice view)

lf an octave (unisson) is approacbed by direct ErotioD, aod one of tbe parts constituting tbe octave
rpproacbes tbe octave by stcp, tbeo tbe barmonic interval (bctween these parts) iurmediately pre-
ccdiog tbe octavc canDot be a niutb (secood) or a seveDtb.

2.1.3.55 Filling in an crposed fifth wbere neitber pan morcs by sap (fill-in vieu')

Wben tbe cbord skeleton view bas decided to seod an cxposed octave or fifth wbere tbe roots of
source and target cbords are Dot equal, and wbere neitber pan constitutiog the fiftb moves by step in
tbe skeletou. tben tbere must be a stepwise movement in one of tbe - -ts constituting tbe erposed



T:4
a3
d4
dr

fiftb aod the new state of that pan must be the normal state. Lo a VJ cadence, an exposed fifrh
caused by a desceoding tbird oD top of tbe bass is acccprable.

2.1.3.56 Erposed seconds, founhs and sevenths introduced by an ioesseodal note (Lime-slice vieu')

An erposed 2nd, 4th, or ?rh arrived at by iump in an odd slot is forbidden, except wben the odd slot
b e consonast chsrcr. and tbe root of tbe odd slot is tbe srme ils tbe root of tbe sourcc cbord.

2.1.3.57 Falsc relations (tinrc-slicc view)

False relations are Dot allowed unless the bass sounds tbe sbarpened note of tbe false relation, or tbe
soprano souods tbe flattcned ootc of tbe false relation, or when tbe false relation crosses a pbrase
boundary (i.e. tbe major-minor cbord cbange).

Erample (no 166, Herzlicb tbut mich verlangen)

d5
184 (. .  )
c4
*2 (")

Comment: tbis ntle oeeds to be enricbed witb cbord type information, by adding cbordtype primirives
for cacb separate time-slice.

2.1.3.58 False relatioo effect introduced by inessential noes (fill-in vien')

If tbere is erists a voice wbose previous state is suspension or descending. then tbe previors even slot
aote of Lbat voice cennot producc a false relation witb any of tbe sleletal nores of the target cbord.

2.I.3.59 f illing in the false rclation produced by tbe pattero C major (first inversion) follou'ed by
E major (first inversion) (fill-in view)

Wbeo tbe basses of tbe source and target cbords form an asccoding major third, and tbe source chord
b tbe first inversion of a major cbord, and tbe target cbord is citber tbe first inversion of (a major
cbord or dominant seveDtb cbord), or tbe fundamental position of (a diminisbed rriad or a diminisbed
scveDtb), tben tbe previous state of the bass Eust h oormal and tbe bass must ascend to is target
ootc via a passing Dote, aDd rbe bass must retaiD tbe oorual state. Any otber voice in the skeleron
tbat moves by parallel thirG (renths) witb tbe bass must similarly be filled io witb a passing note.

Comment: unless tbe e-gf, in tbe bass in a progressioo from C major cbord to E major cbord is filled
in as e-f#-g#, tbe false rclation g-g# becomes disturbing.

2.1-3.fi Crossovers (time-s[cc view)

Crossovers betweeo parts are not allowed. Tbis is a restriction of tbe model, and bas nothing to do
with Bacb.

2.1.3.61 Rule for preventing mits5s of tbe oeighbor note pattern (fiU-in view)

An ordinary neigbbor Dote ornamentation in tbe odd eigbtb Dote slot cao be ued only if it is a pan
of a linear progression e.g. (e d e) is aUowed ooly in tbe contcxt (f e d e) or (e d e f)



2.1.3.62 Cootext of balf notes (fill-in view)

A balf note s'ithin a phrase is allowed only if it is immediaaly before tbe note tbat ends tbe phrase,
and tbe sopr:rDo also sounds a haU note at tbe sanre dne.

2.1.3.63 Miscellaneou

Do not fill-in any omaoental notcs aftcr tbe last cbord of the piece bas bceu seen.

Comment: Tbe fill-in view is capable of accepting any cbords given to it beyond the last chord of rbe
cbord skeleton, in order to kecp tbe proccss pipeline going. This is only a programming convenience.

2.1.4 Heuristics as sceD by tbe fill-in view, tbe time slice view, and the melodic string views.

Tbe desirable propenies are listcd below in decreasrng order of prioriry. Tbe associated view for eacb
propeny is given in parentbeses.

2.1.4.1 Suspcnsions in the bass (fill-in view)

A suspensioo in tbe bass is undesirable, ercept io tbe case wben tbe target cbord is a second inversion,
and $e bass desceods by a minor second, and tbe first skeleul notc of tbis descending pair of skeletal
nocs falls oD a strong quartcrbeat, in wbicb czlse a suspensioo in tbe bass is desirable (becarse it bides
tbe sccond inversion).

Example: (no 210, Jesu meioe Freude)

d5 c5
a4 g:4 a4
14 b3 c4
f3

(")

b4
a4
t4
d3 (")e3

2.1.4.2 Vsice lg2'ling by condnuing a linear progression in tbe bass (melodic striog vicw)

Tbe bass sbould continue an existing linear progression.

Comment: tbis preference, espccially in tbe bass, is markedly seen in many cborates, often continuing
tbe lincar progression as far it will go. For example:

(No. 99 Fs wollt uns Gott genadig sein)

d5 d5 b4 d5 d5 | e5 itl e5 d4
I*4 184 94 a4 | e4 ta4 834 *4 M
b3 c4 d4 e4 a3 | b3 cH4 d4 e4 It4
b3 a3 g3 183 | e3 d3 c3 b2

2.1.4.3 Voice leading by step iD the bass (melodic string view)

It is desirable tbat tbe notes nculy added to tbe melodic string view of tbe bass produce at least one
stcewisc gloverDent.
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Comment: This is anotber example of good counterpoiut practice, whicb is oot necessarily related
to Bacb only.

2.1.4.4 Avoiding repeated high coraers in rhe bass (merged melodic suing view)

A bigh corner is a local maximum in tbe pitcbes of tbe melody. Eg. in (c e d) tbe c is a bigb corner

In tbe bass, if a Dotr occurs as a higb comer, tbeo it strould preferably Dot occur as a bigh @rner
rgain.

Commeot: Tbis also is a composer-independent preference, coming from lEbcioglu 79,81], wbicb
was found by looLing for tbe culprit il progressions geoerated by computcrs (or less talented bumanc)
sucb as tbe following:

f4 a4 94 f4 94 t4 94

Bacb strongly abides by tbis preference in tbe bass, $rceking tbe rule occasionally wben tbere is a
pbrase ending between tbe higb comers. Melodic propenies of tbe inner voiccs bave a mucb lower
priority in Bacb, wberc be very oftcn breakq tbe rule.

Comnrent: thic beuristic is no longer very useful because a constraint about higb @mers makes it tnre
dmost all tbe time.

2.1.4.5 Condi$ors for undesirability of tbe (cighth eigbtb quartcr) pattcm in rbe bass (fill-in view)

Tbe parrcrn (eigbtb eigbtb quaner) is undesirable in rbe bass, il it starts in quanerbcat I or 3 of a
llteasure.

ComEent: ln florid couotcrpoint, we can bave a (quaner quaner balf-note) patt€rD stan a supcnsion
by tying tbe balf Dote to aDotber one over tbe barline, io n'hicb case tbe patcm is very desirable, but
this does not apply in tbe cbonte style.

2.1.4.6 Avoiding jumping to a unisson generated by inessential omamenbtions (fill-in view)

In tbc odd slot, it is undesirable to jump to a notc tbat constitutcs a uoisson n'ith some otber note.

2.1.4.7 Undesirability of supensiors witbout a dissonance (fill-in view)

U a srspension, or desccnding accented passing note will resolvc to tbe fifth of rbe target chord by
descending major second (c.9. tbe suspeoded sixtb of a major cbord), or to tbe seventb of thc target
cbord, tben it is undesirable.

Comment: Tbis rule was put bere bccause tbe progran tcods to produce consonaDt suspensiors too
oftcn otberwise, clearly in ao iocorrect style

2.1.4.8 Srspeosions witb sccood dissonance (fill-in view)

It is desirable to bave a suspension tbat gives rise to a dissonant interval of tbe sccond.

Erample: Wbeo rbe secood i5 mine1, this refers to tbe (perbaps cloyiogly sweet) Bach effect exem-
plified by:



c4
c4:

94
4

(no. 301, O Welt, ich mws dicb lassen)

(fr)
eb4-94

13 I ab3 bb3 c4

2.1.4.9 Sspensions producing a major nintb, major seventb, or fourtb dissonaoce \ritb tbe bass
(fill-in view)

It is desirable to bave a supension producing a major ninth or major seventb dissonance u'ith tbe
bass. It is also desirable to l rve a suspension produciog a founb witb the bass in q$e tbe target cbord
is in tbe fundamestal position.

2.1.4.10 Rcpetitive supcnsions (fiU-in view)

U tbe previous statc of some inner voicc was a suspension state or a dcscending passing Dote state,
tben it is dcsirable for that inoer voicc to cDrer (retain) tbe srspension state during tbe current step.

Example (no. 54, Da der Hen Christ zu Tscbe sass)

f5 eb5 dS c5 c5
cb4
93 (")

93

aM 94 94 J4 ab4 94 14
d4 d4 c4 o4 b3 c4 ab3
c3 b2 c3

(")  (")
d3 eb3 f3

Also note tbe peculiar use of tbe f4 aM 94 f4 pattern in tbe dto, wbere 94 is takeo as the second
barnony Dot€, instcad of tbe tsual f4.

2.1.4.1t fivoirling omameoting tbe dominant when it is rcpeated'in a V-I cadence in an inner voice
(fill-in view)

U tbe sourcc and target cbords are at tbe eod of a phrase aod produce a V-I cadence. and tbe fifth
of tbe key b repeated in some iDner voicc, and tbe urget cbord is a major cbord, it is undesirable to
omameDt tbese repcated skeletal oores by a! upp€r neigbbor note.

Comnent: a ueigbbor notl g4-a4-94 in a G-C cadence seenrs to weaken it

2.1.4.12 Cootinuing a linear progression in tbe rcoor (melodic string view)

Tbc tcnor sbould continue an existing linear progression.

2.1.1.13 Continuing a linear progression in tbe alto (melodic string r.iew)

Tbe dto sbould continue ao cxisting linear progression.

2.1.4.14 Avoiding repeated bigb comers in Oe tcoor (nerged melodic string vieu')

Repcated higb corners on tbe s.me oote sbould preferably be avoided in the tenor.

. t3



2.1.4.15 Avoiding repeated higb corners in tbe alro (merged metodic string vieu )

Repeated bigb cornen on tbe sane Dote sbould preferably be avoided iD rbe alro.

2.1.4.16 Moving by sap in tbe rcnor (metodic string view)

Tbe tcoor sbould move by stcp (rather tbao by skip).

2.1.4.17 Moving by step in rbe alro (melodic striog view)

Tbe dto sbould move by stcp (ra&cr tban by skip).

2-1.4.18 Seconds, founbs, and seventbs approached n'irb parallel motion (rinre slice view)

Seconds, fourtbs and seventbs (mod 7) sbould preferably not be approacbed witb parallel motion.
Tbe founb ioten'al x'ithin tbe context of a t cbord is exernpr from rhis heuristic.

Commenu This is good couoterpoint practice independent of aoy panicular style.

2.1.4.19 Exposed ocraves and fifrbs (time-slice view)

Exposed octaves and filrhs are undesirable.

Comment: This is good couatcrpoint practice independent of aoy panicular style.

2.1.4-20 Not follou'ing a scalar motion by a skip in tbe same d.irecrion (melodic string view)

Ir is desirable not to tcrminarc a scalar motion of at least 4 notes by a jump io tbe same directioo.

Comnent: Gcneral good counterpoint pracdce.

2.1.4.21 Avoiding rbe parrerD ryt z x yx (merged metodicsuingview).

Tbe pattern ,, y , z x y r (e.g. g a g f g a g) sboutd preferabty be avoided. (this caused mucb back-
uacking wben a nrle).

C.omme ot : Gene ral good counrerpoint practice.

2.1.4.22 Uodesirability of tbe descending accented passing note being beard under rbe target pitcb
of tbe passing nore (fill-in view)

tt is undesirabte to bave a descending accentcd passing nore u,ben the target of the accented passing
Dotc occurs io a voice above the ooe sounding rbe passing oote.

Comoent: Gcneral good counterpoint pracdce

2.1.4.23 Desirable propeny of consecutive skips (melodic string view)

U tbere are two consecutive skips then it is desirable to bave a step bet\r'een tbe first and tbe last of
tbe tbree Dotes constituting the skip.

comment: General good couoterpoinr practice, coming from [Ebcioglu 79, gl].

2.1.4.24 Avoiding tritooes (melodic srring view)



It is desirable to avoid trjtones spanned io 3 or 4 ootcs.

2.1.4.25 Cooditions for undesirability of tbe globd rhythn (eightb eigbtb quarter) (fill-in view)

Tbc globd rhythmic pattcm is found as follows: if any roica striles a norc in a givco time-slice, tbat
timc-slicr is considered to suvt a oew global note, otberwisc tbat timc-slicc b considcred to condnue
tbc previots global Dot€. Tbe global rbythmic patEm is tbe rbyrhmic pattero of tbese global ooas.

Tbc global rbfhm (eigbtb cigbtb quancr) is uodesirablc if it stars in quararbcat I or 3 of a mcasure.

2.1.4.26 Avoiding lack of eigbrb notes (fill-in view)

Wben lle two cbords preceding tbe source cbord are not phrase eudings, and tbere bas not bcen any
global eigbtb notc movement during tbese tu'o quancrbeas preccding tbe source chord, tben it is
dcsiraL,e to bave some notc struck during tbe cunenr odd slot-

2.1.4.27 Parallel sirths and thirds (time-slice view)

Ir is desirable to bave some voiccs Eove stcp\r'ise in parallel si,xtbs (rhirtcentbs) or parallel rhirds
(tcntbs).

Erimple:
(No. 43, Cbrist unscr Herr zum Jordan kam)

f#5 c5 d5
t84 b4 a4
c4 b3

No. 39, Cbrist lag in Todesbanden

e4 Ii4 94 14
b3 e4 e4
E3 a3 b3
e3

e5 d5 dS b4
94 I#4 e4 d4 (")

ili 93 I*3
(")

2.1.4.28 Creating a V-I or VII-I progression tbat did not cxist in the cbord skeleton level at the
cigbth nou fill in level (fill-in view)

If tbc target and source cbords did not already bave a V-I or VII-I relarionship, and if some voice
strikes a note in tbe odd slot, tben it is desirable that the insened chord in tbe odd slot form a V-I or
Vtr-l pataro witb eitber the sourcc or the targer chord.

Commeot: this preferenoe was discusscd in tbe tcxt as pan of rbe undcrtyiog reasoDs for the con-
struction of tbe first measure of "Jesu meine Freude". Here is anotber occurrencc of tbe preference:

b3
e3

a3 b3 c3
d3 c3 b2 z2

. a#3 f#3
f*3 b2

e4 I:4
. d'4

94
e4
b3
e3

(")

2.1.4.29 FoUou'ing tbe leadiog note with tbe tonic (merged melodic string vieu')

:ading note of a key sbould preferably be foUowed by tbe tonic.
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c4c4

Cournrenr: This rule bas a very low priority in Bacb. He uually opts for a complete cbord witb root
double4 instcad-

Example: (No. 8, Acb Gott vom Hirnmel, sieb darein)

c5 b4 a4

g#3 a3 g#3 c4 (")
c3-a2

2.1.4.3O Not following tbe resolution of a supension by an upward sUp (fill-in view)

A suspcnsioo or descending passing note tbat is resolved on tbe odd eigbtb note sbould preferably
oot be followed by an upward skip, erccpt wbeo the target of tbe skip is a phrase ending.

Comnenr: This may actually be untrue if rhe skip reacbes tbe erpectation of a pending linear
progressioo, but unfonunately tbe preseDt process does not maintail a Scbenkerian aoalysis view in
iseU-
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2.2 THE SCHENKERIAN ANALYSIS VIEW

2.2.1 Explanatioo of rbe functions and predicaus of tbe Scbenkerian analysis view

Tb€ Scbcnlcrian analysis view obscrues tbe cbonle as tbe sequencc of seps taken by a bottom-up
piuser for tbe reuriting rutes given in tbe tcxt, whicb assigns a Scbeokeriao andysis to the melody or
bass lines, and outputs tbe nodes of tbe correspooding parse tree in (almost) postorder.$ Two sepa-
rate, independent copies of tbe Scbenterian analysis view are simultaoeously active for parsing tbe
oelody aod bass lines. Eacb parser bas a suck. Each entry on tbe stack cootaios iams includiog a
poinar to 6e last oot€ that was scanned, and tbe current parser state. At cach stcp n-0,1,... the
pa$cr may decide to pusb a new eDtry on tbe sracL, dtcr the current top eDtry, or pop tbe stack.
Tbe grannar b hig5ly ambiguous, therefore during some steps, tbere is more tban one possible actioD
to bc perforoed. Tbe 9:bcnkcr koowledge base conains contcxtdependeot beuristics for cboosing
tbe actioo tbat is likely to yield a tnore conect analysis.

Tbe pseudo fuoctions aod predicates for tbe Scbeolerian analysis view are shown below:

In tbc foUon'ing pseudo functioos, tbe argumcnt o (ranging over 0.1,...) indicates tbe se-
qucnce uo. of tbe cureDt pa$er step.

sbtc(D): (uncommittcd, lp, dominant)

This fuoction yields tbe paser state tbat tbe parser places on tbe on the stack top during
strp o Tbe lp (linear progression) state is used to indicate tbat ao asceoding or descending
lioear progression is in the process of being parsed. Tbe uncom'nitted state indicates that
a Dew progression bas been begun to be parsed, but it is as yet unclear u'betber it will be
an ascending or a desccnding linear progression. Tbe dominant state indicates tbat tbe
parser bas reacbed an intermediare point while parsing a tonic-dominant-tonic progression
io rbe bass. Refer ro tbe gram-mar and rules for more precise meanings.

direcrion(n): (desccot--1, Deutral, irscent)

WLen used in conjuncrion witb state(u)-lp, it qualifies tbe linear progressioo in progress
during parse stcp n, by indicatiog is direction. U state(n) is not an lp, direction(n) is irrel-
cvanL

begin(n): integer

ls a pointcr to tbe beginning of tbe linear progression or other syotactic item placed on tbe
stack top during p:user step n.

hst(n): integer

ls a poinar to tbe ioput note tbat was seeo during step n (usually, the one that i(o) poioad
ro).

lastnotc(n): pitch_type

ls tbe pitcb (7' octave oumber + pitcb name) of tbe input nou tbat u'as seeD during step
n.

Wc onJy got thc mclody enalys: .1 to worl so lar.

297



tilted(n): boolean

lint(o): i;oteger

! tnrc iff tbe linear progrcssion in progress during step o bas been rilted, i.c. ir bas cbanged
direction at some poiot. Tbis is true wlen parslng tbe secood itenr on tbe rhs of: (s x y)
+ ( fpx z)( lpzy)

pak(n): integer

ts a-pointer to the input Dote oo whicb tbe tilted lioear progressioo in progress duriug step
n, cbanged direcrion.

cxpectations(n): sct of pitcb rype

This is a bit string containing a subset of t,re pos.sibte notcs with whicb tbe lioear
progressioo or otber progressiou currentty pusbed down in tbe stack's top_l,st entry, caD
bc continued. Encounrcring an crpectation of the suck's top-l'sr entry in &e inpur" is aprcrequisite for popping tbe stack' and retuming to tbe linear progression or otbei type ofprogression tbat was pusbed down.

Eacb parser stcP ooDceptually creaGs a Dew stack accord.ing to the sock of tbe preyious
Parser step. However, iD rcality, only a single stacl fraoe is-creared during the o'rb p:Mser
EGp (the ncw stack's top frame): ihis fmms contains of tbe attributes decided during
PaFer stlp n' A opnng of tbe entire stack of tbe previors sap is nor performed; instcad,
a poioter, link(o), is rsed in tbe top frame creaedduringr,.jo, tbat poins 19 ibe cbainof stack frarnes tbat were created by previous sups of tbi parser, and 15at do not need robecbangedduringtben'tbstep. TbeconteoGof thesrackafrcrsupnof tbeparser,  ca6
be recovered from top to bottom, by sraniog witb tbe stack frame coosisting of tbe atrri-
butcs of step D' and following tbe cbain of stack frames pointcd ro by link(n), unril a NILlink [5 rcacbed. Tbe value of link(O) is set to NIL

outputs),m(D,i): Scb granmar_ry?e
argumenty(n,i): intcger
argunentz(n,i); incger, i-0,...,4

Tbesc arrays contain tbe output symbots tbat the pa$er outputs after executing step n.
Tbe stnrcture of tbese arTays :ue bidden by appropriate m""roi.

lcvel(n): inreger

Tbis indicaas tbe coocepruar deptb of tbe stack afrcr srcp n is erecured.

iocr(n): iorcger

wben l, indicatcs that the input poiotcr must be incremenad by one bcfore proceediog toparsbg stcp D+l- Wben 0, indicates that tbe input poioretr,or be lefr iotact wben iro-cceding to step D+1.

Utility artributcs:

i(n): ioreger

Tbe ioput poiorer wben parser step n begins to erecurc. i(O) is O, and i(n+l) isi(o)+iocr(n)' Notc tbat tbe input is a srquence of pairs of pitcbis and accidentats for tbe



descant and bass, plrs cootext information, sucb as tbe prevailing cbord or key at the time
tbat pitch b souoded. Tbe input strcam for a Scbenkcr process is updated after eacb suc-
cassful step of tbc fill-in view. Nou tbat a parscr stcp can look abead !o several input notes
following tbe curreot ioput note.

Commenr: Tbe propram think< that the input stars witb notc ao. 0, but in tbe slur-and-
mtebead aod tracc printous io appendix A, the input scqueocc oumbers are iocreased by
t so tbat tbc first inpur noc bas scquence number l, in order tbc make tbe Dotation coD-
ristcnt wilb tbe otber aoalysis exaoples in tbe tcrt-

2.2.2 Relationship bctwcen the analytic slur urd Dotehcad notation aod tbe symbols of our re-
nniting rules

Tbc symbols ourput by tbe paser can be iret'.latcd into a Schenkcr-like grapb of slurs and notcbeads.
Tbe program draws sucb a grapb on a graphics screen wbeo the parsing is complete, or u'hen tbe
intcractive mode is on. Wbenever the parser outpub (n x), tbe DoEbead and accidental, if any, cor-
rcspoodiog to tbat Dotc r are drawa. Wbenever (s x y), (lp x y), (td x y), (dt x y) is output by tbe
parser, a slur is drau'n betwceo tbe notcbeads for x and y. U two slurs are draun between a given pair
of notcbeads, they arc drawn oD top of eacb otber, and appear ils oDe slur. A set of C procedures
perform tbe straigbtforward calculations for keeping track of slurs tbat ertend over two or Dore
staves, and for ensuring tbat tbe bierarcbically nestcd slurs do Dot oven*Titt cach otber.

2.2.3 Geoeration of tbe attributcs of a parser srp

2.2.3.1 Gencntion of rbc utility attributcs

If tbe current step is not the fint (n>0). tbe utility attribute i(n), tbe input pointer, is updated ac-
cording ro tbe previous Schenker step of tbe same voicc, as describcd above. U tbe current step is tbe
first (o-0), i(o) is set to 0.

2.2.3.2 Tbe fint pa$er step for tbe &scant

ln tbe bcginning of tbe soprano line, it may be assumed tbat aa imaginary note is bcing scen, whicb
b cqual to a guess for tbe fint structurd notc of the fundantentd line (tbe guess is given as an exrcrnal
bput). Tbe stack hvel may bc set to 1. (Tbe imaginary first notc elirninates tbe problem of bandling
eu initiat :rsoenr sJ 1[g pn<upponed stretcb -initial descent- as a special case). Tbe uocommitted state
may be entcred. Thc input pointcr may be left intact so the tnre first notc c:rn be examined by tbe
Dert stage.

2.2.3.3 Thc first p:user stcp for thc bass

In tbe bcginning of tbc bass lioc, it may bc assumed tbat aD imagioary note equal in pitcb to tbe tonic
b bcing sceo (thc toaic is given as an exrcroal input). The stack level may bc set to 0. Tbe uncom-
Dittcd state roay be cntered. Tbe input pointer may be left intact (so rbat tbe rue first note can be
e:aruined at tbe next stcp).

2.2.3.4 Cootiouing wbco tbere b ao uncommittcd progressioo in progress.

Definition: Tbc current notc is an irnmediate ?xpectation iff tbe curreDt notc is tbe sante as or a steP
eway from tbe last notc of the previors stacktop-l progression, or the voice is bass and tbe current
Dotc b nD octave au'ay from tbe last ootc of tbe previous stacktop-t progression, and (lbe stacktop-l
progressioo is a rilad lp implies tbe current oote does Dot sti- -n lp in a direction opposite to tbe



dircctioo of tbe previots stacktop-l progression). As exceptioos, in tbe soptznor wteD thc previouss?
level is I (meaning tbat the fuodamental line is being parsed), tbe cunent note is an igrmediatc ex-
pectation iff it is tbe tonic note; in tbe bass, wben tbe previous level is 0, tbere can be no immediate
expectations.

Definition: tbe cunent Dotc ir an erpecadoo ilf

tbe currcnt Dotc is an immediare expectation,

or tbe voice is bass, and tbe tast oote of the previou stacktop-l progressioo bears tbe tonic
of some kcy in tbe fundamenul position, and tbe cunent Dote hars tbe dominant of rhat
lcy in tbe furdamental position,

or the voice is bass, and tbe previous stacktop-l state is dominant, tbe last note of tbe
previous sracktop-l progression bears the dominant of some Ley in tbe fuodameotal posi-
tiou, and tbe current ootc bears $e ronic of that key in tbe fundamental position.

2.2.3.4.1 Case wben the previous stack top pitcb is equal to tbe curreot pitcb

If rbe previous stacktop state is tbe uocommitted state, aod tbe prerious stacktop pitcb is equal to tbe
curreDt pitch, or if tbe voicc is bass aod rbe cureDt pitcb is relatcd to tbe previous stacktop pitcb by
l! octave, it is possible to continue an cxisting uncommitGd lioear progression by rcaining the un-
corurnitted statc, leeping tbe stack level uncbanged, outputing (n 'curreot note') (s'previous stacktop
Eotc' 'current Dote'), aod incrementing tbe input pointer. Tbe symbol (n 'cunent note') is Dot output
if tbe prcvious st€p popped &e stack.

U tbe current pitcb is an expectation, and il tbe previous stacktop pitch is equal to tbe current pitch
or if tbe voice is bass and the current pitcb is related to the previous stacttop pitcb by aD (rclave, aDd
tbe previous stacktop state is tbe uncommitt€d state, it is possible !o pop tbe stack by outputing (o
'cutrent Dote') (s 'previor.rs stacktop Dote' 'curreDt note') (lp'previous stacktop note' 'current nou'),
end incremeotiog tbe ioput pointcr. Tbe symbol (n 'currenr oote') is Dot output il tbe previons slep
popped tbe stack.

2.2.3.4.2 Case wben tbe current pitcb and tbe previors stacktop pircb are a step apan

U tbe prcviors stacktop state is uocommitted, and il tbe current pitch is a stcp higber or lower lban
tbe stacktop pitcb, tbcn any of tbe foUorring may be done:

A linear progression state may be pushed on tbe stack, witb beginning set to tbe previous
stacktop pitcb, aDd tbe follou'ing symbols may be outputed: (o 'current note')(s 'previous
rracltop noc' 'cur?cnt Eo!c'), aod tbe input pointcr may be incrcmened,

Or tbe stack top may be dtered to become a linear progression, witb bcginning set to the
prtvious stack top pitcb, and tbe following symbols nay be outputed: (n 'curreot note')(s
'previous stacktop note' rcur?cnt Dote'), and the input poioar may be incremented.

Or, in case tbe currcnt pitcb is an expcctation, tbe stack may be popped, and tbe follou,ing
synbols may be outputed: (n 'current uote')(s 'previors stacktop Dorc' 'curreot note') (lp
'previous stacktop Dote' 'current Dote'), aod tbe input poinar may be left intact-

l\..otc thar the gremmer rllos's sLips of a third sithin lincer progrcssions. so . cuf,rrnt norc a third eszy from the last note
of ptlvbw strcl'rop I should rlso bc an irnrnediatc cxpccution, but this has nol bccn implcmcntcd. Similarly, thc s\ips
of scvcnth, ninth, end in thc sopnno. tlrc rkip of en ocBvc. h:vc not bccn irnplcmcntcd ir Otc pr.scnt panscr. although
rUowcd by thc gnramar.



ln all cases, (D 'curreot Dot€') will not be outputcd if rbe previous srcp popped tbe stack.

2'2'3'4'3 Case wben tbe inurvat betweeo tbe prcvions stackrop pitcb aod tbe cunent pitch isgreaur than a sccood

U tbe previots stacttop indicatcs an uncommitrcd statc, rnd tbc inarval bctween tbe previous
stacttop pitch and the curreot input pitcb is greatcr than a sccood, tbe following ar. porriut.,

U tbe curreut input pitcb saGfies a.u erpcctatioo of the previors stackbp-I, tbcn tbe stack
may be popped aod tbe symbol (n 'curreot Dote') may Le outpured, 

-d 
th. input poinrer

oay bc left intact,

Or an uncommitted shte IDay be prsbed on tbe stack, witb begiming set to tbe current
pitch, aod tbe following sequeDce of symbols may bc outpured: (o ."un.nt note'), aod $e
ioput poinkr may be incrernenEd,

or tbe stack level may be left inuct, and tbe uncommittcd state may be retained, and tbe
follou'ing scqueDc€ of symbols may be dran'n: (n 'curreot oote'), and tbe input pointer
nay be iocreoeoted-

or' if tbe voice is be's, and rbe previous stacktop and cunent notes (aod tbeir associated
barmony) make a l-V motion P tb. fundamental positioos, e dominanr starc Day 6upubed on tbe stack, and tbc foltowing sequenoe of iymbols may be drawn: (n .current
notc') (s.'previots stacktop note' 'current note') (td 'previons stacktop note, .current
Dott'), and tbe ioput poinrcr oay be incremented. Tbe slubot 1n .curreoi oore') wiII oor
be outputed il $e previous sr€p popped rhe stack.

2.2-3.5 Cootiouatioo whea tbc previous stactrop srace is tbe domioant starc

2.2.3.5.1 Case wben rbe curent pitcb repeas tbe sracktop pitcb

U tbe previots stacktop sate is the dominant stat€, and tbe cureDr note is again tbe dominant nore(possibly an octave tou'er or higber), then tbe dominaot state may be retained, and rbe foUowing se-quencc of symbols may be outputcd: (n 'curreot note') (s 'previors stacktop Dote' .cutreot note'), andtbc ilput poinrer may be incrcmcnEd. As rsual, tbc (n 'currenl norc') synrbol is not ourpured, if &epreviors step popped rbe stack.

2'2'3'5.2 Case wben tbe current pitch is a fiftb betow or a founh above the sracktop pitcb

U tbe previous stacktop state is tbe dominant state, aod tbe curent notc and associated harmony aretbc relative tonic in tbe Juodamenut position, tben tbe srack may be popped, and t6e following se-qucDae of slmbols may be outputcd: (o 'curreot ootc') (s'previous stackop Dote' .current note') (dt
'previots stacktop notc' 'curreut Dott'), and the input poinier may be left inucu U tbe previoss steppopped rbc s.ack, tbe symbor (o'currenr noa') wiir ooi u. outpuld

2-2.3.5.3 case wben rhe curenr pitcb aod tbe stacktop pitch are a srcp apan

lf tbe prcviotts stacktop state b the dominant state, aod rbe curent Dore Eoves a steps away fromtbc prcvious stacttop oote and appeats to start a tinear progressioo, theo a tinear piogression be-ginning with tbe stacktop notc ntay be prsbed on rbe rt 
"i, 

i,o tbe folloning sequence of synrbotsmay be outputed: (n 'current mte') (s 'previoru stacktop Dote' 'curreot Dote'), and the input pointer

lncluding 
' 

risinS chronratic atcp' .l$ou8tt this is not crprcsscd in the grrnunrr. Eg. considcr lhe rsccnding founhprcgrcssion cb3' e3 . R' 93. eb3 in thc bass of o wclt, ich mrss octr tesseitcrrorat. no. 30t 1. *hosc suning polr m,stbc eb3.
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may h incremeotcd. As usual, il tbe previous sup popped the stack, tbe syurbol (n 'curreot note')
will not be outputed.

2.2.3.5.4 Case wben tbe previous sockop pitcb and tbe current pitcb are more tban a steP apan'

but tbe cuttrnt pitch is not the cxpecrcd bnic

U tbc previors sracktop stae is tbc dominaot sultc, and tbe bass moves by skip, and the skip is not

aD ocurvc slip, tben:

an uDcommitpd progression may be pusbed oD tbe stack, and tbe follon'ing sequence of

symbols may be outpured: (n'current Dot€'), and tbe input pointer may be iDcremeoted'

or io case tbe bass and associated barmony make a I-V motion in some key, a dominant

stare Day be pusbed on tbe stack, aDd the following sequence of symbols may be outputed:
(n .current Dote') (s 'previous stacktop Dote' 'curreDt note') (td 'previous stacktop note'
'current oote'), and tbe input poinar may be incremented. (D 'curtent note') will not be

outputed il tbe previous steP poPPed the stack.

2.2.3.6 Continuation wbeo tbe previors stacltop stare is a linear progression (lp)

2.2-3.6.1 Case wben tbe current pitcb contioues tbe linear progression in tbe same direcdon

U tbc previous stacktop stete indicates a linear progression (lp), and tbe current note continues tbe

lioear progrcssion in tbe same direction by stcp, tben any of tbe following Day be done:

Tbe stacli top may be updated to reflect tbe oew current notc, tbe lp state may be rerained,
and tbe foUowing s€quenc€ of symbols may be outputed: (n 'current noa')(s 'previous

stacktop not€' 'curreDt notc'), and tbe input pointer may be incremented. . Hon'ever, (n
.cutTent ootc') wiU not be outputed if the previolls step popped tbe stack.

A new linear progression state may be pushed on tbe stack, witb beginning set to tbe pre-

viol5 stacktop pitcb, aod tbe following sprbols may be outputed: (n 'current note') (s
.previogs stacktop Dot€' 'current, note'), and tbe input poinar may be incremented. Hou'-

ever, one of tbe following beuristics ntust be tnre wben this action is taken: tbe beuristic

ebout pgshing upoD recognition of a'f e d c'paltlm, tbe heuristic about pushiDg uPon re-

cognition of a neigbbor Dote pattcrD, the beuristic about pushing upoD recogDition of an

Ccbapp,C patterD, tbe beuristic about pushing upon recognition of ao (a b c c b c) phrase

eoding patttm. Tbe symbol (n 'current note') will oot b outputcd if the previous step
popped tbe stack.

In case tbe curreDt Dote is aD erpectation of stacktop-I, tbe stack may be popped, and the

foltowing:scquence of symbols may be outputed: (n 'current note') (s 'prerious stacktop
notc')(lp 'previous stacktop begin poinar' 'curreDt Dotc'), aod tbe input poinar may be left
inracl However, (n 'current note') will Dot be outputed il tbe previous step popped the

stack. (In tbe soprano, il the previors level is l, a oew stack witb levcl zcro and bearing a

eingle uncommitted stau stack frame on it may be coostructed aod rbe input poinrcr may
be incremeotcd; this is a tricl to handle tbe cnding note of a fuodamental line).

2.2.3.6.2 Case wben tbe curreut pitcb repeas tbe stacktop pitcb

U tbe previous stacktop stare is a linear progression, and (tbe current pitcb is a repctition of tbe

stacftop pitch, or tbe voice being processed is tbe bass and tbe current pitch is aD octave apan front
tbe stackrop pitch), tben alt attributes of tbe previous stack may be retaioed, witb tbe exception of tbe

sracltop pitch whicb may bc altered to reflect tbe current pitcb, and tbe follon'ing sequence of sym-

bols may be outputed: (o 'curreot note') (s 'previots stacktop note' 'current note'), and tbe input
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pointcr may be incrementcd. However, if tbe previous step popped tbe stacl, tben (n 'curreDt notc')
will not be outputcd.

U thc previous stackrop statc is a linear progression, rod (tbe cuneDt pitcb is a rBpctition of tbe
Itacktop pitch, or tbe voice bcing processed is tbe bass and tbc currcnt pitcb b ao oeurvc apart from
tbe stacktop piab), and tbe curent ootc is an crpectatioo, tben tbe sock may bc popped, and and
tbc foUowing scguence of syobols may be outputcd: (o 'current Dorc') (s 'previors stacktop Dote'
'cuntnt note') (lp'previous stacktop begin pointcr' 'c-unent notc'), end tbe input pointcr may be left
ioracr However, if tbc previous stcp popped tbe stacl, tben (n 'culreDt oou') will Dot be outputcd.
(lo Oe soprano, if tbe previou level is I, a new stacl witb levet zcro and bearing a single uDcom-
mi$ed surrc stack frame on it may be constructed and tbe input poioar may be incrrmentcd; this is
e uick to bandle d1g surling notc of a fundarueotal lioe tbat cods witb sn uticipation paturn).

2.2.3.6.3 Case wben tbe current oote shns a linear progressioo in tbe oppositc direction

U tbe previous stacktop state indicates a lioear progrcssioo in progress, and the curcnt note moves
by stcp and starts a linear progressioo in tbe oppositc directioo, tben any of tbe following may be
done:

A new linear progression in $e opposite dircction may bc pusbed on tbe stack, with the
beginning pitcb sct to tbe previors stacktop pitcb, and tbe followisg sequeDce of symbols
may bc outputed: (n 'current note') (s 'prcvious stacttop Do!e' 'curreot Dote'), and the
input pointcr may be incremented. However, tbe symbol (n 'current note') wiu not be
outputed if tbe previous stcp popped rhe stack.

Tbe sracktop may be cbanged into a 'tilted' linear progression whose point of direction
cbaoge (peak) is tbe previous stacktop pitcb, and tbe follou'ing sequence of symbols may
be outputcd: (lp 'previors stacktop begin poinar' 'previous stacktop notc') (n 'current
note')(s 'previous stackbp Dote' 'curreot notc'), and tbe input poinar may bc incremented.
However, the syrnbol (n 'curreot note') will Dot be outputed, il tbe previous step popped
tbe stack. A lioear progression that bas alrcady been tilted, cannot bc $lad again.

In case tbe cunent Dot€ is ao cxpcctadon of tbe stacktop-l cntry, the stack may be popped,
end tbe following sequence of syobols may bc outputed: (lp 'previous stacktop begin
pointcr' 'prcvious stacktop oote') (n 'current ootc')(s 'previous stacktop Dote' 'cunent
notc') (lp'previors stacktop Dol€' 'current Dotc'), and tbe input poinar oay be left intact.

Comnent: these two latter paragrapbs consritute cilses wbere tbe postorder eDumeration may be vi-
olrtcd. For erampte, coruider tbe sequeoce of pitches:

b4 c5 94 a4 b4

rhicb are etpectcd to be parsed as foUows, disregarding tbe fint (n b4):

(s b4 b4) - 
(lp b4 c5Xlp c5 b4)

(lp b{ c5) - 
(s b4 c5)

(s 54 c5) 
- 

(n c5)
(h c5 ba) 

- 
(s c5 b4)

(s c5 M) * (n 94) (lp ga M)
0P ga ba) - 

(s 94 a4) (s a4 b4)
(s 94 a4) * (n a4)
(s a4 b4) - 

(o b4)

Tbe parser could parse tbis sequeoce in 6 steps aod output tbe following symbols in eacb step, but (lp
b4 c5) in rbe 5'th step would be out of sequence. (lp ba c5) sbould have been outputed as the last



slmbol of stcp I to be in the correct postorder scqueDce, but tbere w:Ls Do way to knou' i! step I that
tbc lp suning as M c5, would be tilted.

initially, previow stacktop state: u, previors stackrop uote: M, cureDt note: c5
t- (n c5) (s M c5), push lp
2- (o g4), prsb u
3- (n a4) (s 94 a4), hold lp
+ (n M) (s a4 b4) (lp ga ba), pop
5- (lp M c5) (s c5 b4) (lp c5 M), pop
6- (s b4 b4), bold u

2.2.3.6.4 Case wben tbe current pitch and tbe previo, s stacktop pitcb are more than astep apart

If tbe previors stacktop state is a linear progression, and tbe cuneDt pitcb and the previous stacktop
pitcb are more tban a step apart, tbeo any of tbe following is possible:

U tbe current note is an cxpcctatioo of tbe stacktop-l'st eDtry oD tbe stack, tben tbe stack
may be popped, and tbe following sequence of symbols may be outputed: (lp 'prerious
stacltop bcgin pointcr' 'previous stacktop Dotc') (D 'curreDt oote'), and tbe input pointer
may be left inoct,

Or an uncomrnittcd state may be prsbed oo tbe stack, and the fouowing scqueDce of sym-
bols may be outpured: (n 'curreot note'), and tbe input poinur may be incremented,

Or, in case tbe voice is bass and tbe previous stacktop nou and cunent note and associated
barmony form a I-V pattern, a dominant starc may be pushed in tbe stack, and the follow-
ing symbols may be outputed: (n 'current Dote')(s 'prcvious stacktop Dote' 'current note')
(td 'previors stacktop notc' 'current oote'), and tbe input pointer may be incremented. U
tbe previous state poppcd tbe stack, (n 'current note') will not h outputed.

2.2.4 General constraints about tbe attributes of a Scbenkerian paner step

2.2.4.1 Deptb of the stack

Tbc deptb of tbe stack (level(o)) qrnnot erceed an absolurc limig flg limit is 6.

Comment: Cborales generally bave shallow structures, and a stack level of 4 is typicaUy not excceded.

2.2.4.2 Expccad state of tbe stack at tbe eDd of tbe piece

U tbe ending note of tbe piece is currently being seen, and tbe input pointer is currently being incre-
meocd, tbeo tbe stack level Dust be 0. (i.e. tbe stack must be empty. except for a single entry re-
prescnring tbe final uncommirted stare).

2.2.1.3 Rcquirement oo tilted linear progressioos reaching an erPcctation

A tilted linear progression oust reacb is expectation by lioear motioD and oot by jump. Tberefore,
if tbe previous stacktop state is a tilt€d linear progressioo, and tbe current pitcb and tbe previous
sracktop pitch are more tbaD a step apart, and tbe current pitcb is aD erpectation of tbe stacktop-l'st
eDtry oD the stack, tben tbe stack cannot be popped.

2.2.4.4 Rule on proper parsing of tbe fundameotal line



tn tb€ soprano, wbeD tbe previous stacl lcvel is one, end tbe curent Dotc ooostirutes a jump u'itb
Fspect to tbe previors sucktop ootc, tben tbe stacl level mrct be iacremenrcd

Commenc In tbe soprano fundaneotal lioe, Oe final onic mtst be reacbcd by a linear progressioo
rod not by jump, so tbe sack may Dot bc poppcd wben tbe EopraDo junpo to tbc tonic.

2.2.4.5 Tbe ueatment of regisrcr tnnsfers iD tbe bass

Tbe octave iump mut dways be reatcd as il it were a pitcb repctition in tbe bass. Tberefore wben
the previots suckop notc and tbe currcnt ootc are iut ocrarc apart, aod tbc voice being processed
b tbe bass, tbeo rhe stack can oot be pusbed.

2.2.4.6 Rcquiremenr oo prshiog a linear progressioD wbeo rbc stacl hver is 0 io rbe bass

Wben tbe previotts stack level is O, aod tbe previors stack stare is uocommittcd, and rbe cunent pircb
stans a new linear progression by moving a stcp away from the previous stack top pitcb. tben rcme
cilry Dust be pubed on tbc stack.

2.2.4.7 Agrecmcnt between tbe direction of a linear progression aod tbe location of tbe expecra-
tions.

ln tbe soprano, wbcn the previous stacktop staE is aD unconrmitted progression, and tbe current note
sufts a linear progression by moving a step away from tbc stacktop pitcb, tbe stack level cannot be
tept tbe same by cbanging tbe state into a linear progression if rbe lincar progressioo tbat is curreDtly
startilg does oot point in tbe direction of tbe immediarc erpectations of tbe stacktop-l'st entry oo rbe
stack.

Comment: Note &at regisrcr rancfsl bas not been implemented in tbe sopraoo, i.e. tbere is no way
that rhe lioear progressioo can reacb tbe expectatious of tbe sucktop-l entry in tbe octave. ln tbe
bass, there is regisar transfcr, so rhi< nrle is not effective.

2.2.4.8 Agrcement between pitcb aod accidentals of tbe Urtinie and tbe tonatity of tbe cborate.

lu tbc soprano, wben tbe stack level tbat is currently being decided upon is l, tben tbe pitcb and ac-
cideoral of tbe stacktop note tbat is currently being decided upon mrst conform to the tonic ronality
(desceodiog metodic mins1, il tbc kcy i5 rrinsl).

Comment: this ntle pttveots, e.g. assigning a stnrcturat octave progression to'Jesu meine Freude,'
rincc tbe octave progression would bc dorian, and not minor [Fortc and Gilbcn 82].

2.2.4.9 Rcsuictioo on tbe oontcrt of riled lincar progrcssions

lf tbe previotls stacktop statc is h and it is Dot a tittcd tp, and tbe curreot Dote Eoves a step a\r'ay from
tbe previous stacktop Dote, starting a linear progrcssion iD rhe oppositc directiou, and if tbe begi.oning
pitcb of tbe previous stacktop progressioo is not equal to tbe last note of tbe stacktop-l progressioo
(meening tbe previors lp starud by juoping to sone note), tben it b nccessary to prsb somethiog (an
lp sua; oa tbe srack.

2.2.4.10 Restriction for preventing a dlrcd linear progression from moviog astray afur missing tbe
erpectarions

ln tbe soprano, wben the previots stacktop progressioo is a tilted lp, and the cunent Dore contiDues
lhe current lp in tbe same direction by stcp, aod tbere does not exisr any note (among all possible
ootcs) tbat is an immediate erpcctatioo of tbe progressioo io stacttop-!, tben it is impossible to bold
stack. (O0en'ise, tbe expectations will never be reacbe,l.) .



2.2.4.11 Resuiction about popping tbe stack on a weal eightb beat

It is forbidden to pop tbe stack oo an eigbtb Dote on a weak beal

Comnent: Tbe present parser is beuristic-driven. Tbe above-listed absolute rules are mainly syntac-
tic rules !o cnsure a legd parsing. Tbey are not stroDg enougb to enforcc a good analysis wben tbe
beuristics suggest a locally good, but globally wrDng Eove. Researclr toward Eore strong rules u'itb
ricb musical ooDtent is required. We presently feel tbat possible extensions of tbe present rule set
could be in tbe directioo of changing some beuristics to rules, e.g. enforcing tbat slur boundaries tbat
oonDect disraot ooteheads coincide witb eitber group beginnings and eodings (boundaries tbe sense
of [Jackendoff and Lcrdahl 81, I-erdahl and Jactendoff 83, Tenney and Polanski 80]), or imponant
ootes (c.g. ooroers- local pitcb mailma, long notes- local durational maxima). Anotber plausible rule
sppears to be oot to enclose aD "iDportant" note $'ithin tbe scope of a slur tbat wbose cndpoints are
less "imponaot" tbao tbe enclosed oote. However, the problem is complicated becaue in a
Scbenkerian bearing, some Dotes are important only because tbey are at tbe endpoins of analytic
dun within a deep linear progression, ratber tban because of tbeir surface salience.

2.2.5 Desirable propenies of tbe atrributes of a p:user step

Tbe desirable propenies of a Scbenkerian parser action are listed below in decreasiog order of prior-
ity. Tbe symbolic oame of eacb beuristic (as ued iD tbe example parsing in tbe text), is given in pa-
rpotbeses aftcr cacb beading.

2.2.5.1 Tbe Urlinie beuristic (Urlinb-heuristic)

In tbe soprano, if tbe previors stack level is t. and tbe previous stacktop state is uncommitted. and
tbe curreDt Dote starts a descending linear propressioo by moving a step do'*roward from tbe prerious
eiacttop pircb, then it is desirable to pusb a linear progressioo tbat starts witb tbe previous stacktop
pitcb, except wben (tbe current phrase is tbe final phrase, or wben tbe current phrase is the
penultimate pbrase and the structural progression of tbe descant is tbe dcsceoding octave
progressioo) aod tbe rs6sining notcs of the input make a simple scalar descent to tbe tonic (possibly
including repeated notes). ln tbesc exccptional cases it is desirable to Leep tbe stack level intact and
dter tbe staiktop by cbanging tbe statc into a linear progression.

Comnent: Tbc Urlinie beuristic discourages, e.g. bolding tbe stack level wben a4 is encountered
wirhin tbe first notcs M b4 a4 94 Ii4 e4 of Jcsu meine Freude: bolding tbe stack at a4 would be
reasonable only il tbe entire piece consisted of tbese five notes. However, it needs some modifications

to bandle a chorate like 'Acb wie nucbtig', wbere tbe structural I 
-O 

i come earlier than tbe last
pbrasc.

2.L5.2 Dcsirable parsing of tbe f e d e patcrD (pusbing tbe stack) Qfa-mi+e-mi-push)

Utbecurreotpi tchpattcmbasstructurefcde,orfeede,orfedde,wheretbecurreotnoteisthe
sccoDd Dote in tbe seguence, aod tbe first note in tbe sequence ls the stacktop note, aod tbe final note
of tbe pattcrD b a pbrase cnding, or if tbe curreDt pitcb patt€rD bas structure f c d b e, where the
current oote is tbc sccond note in tbe scquencc, and tbe first note in tbe sequencc is tbe stacltop note,
or if tbe sracktop note, tbe current oote and tbe four following notes iue eDtirely witbin a phrase and
produccafcdedcpattem,tbeoi t isdcsirabletoincreasethestacklevelat thecurrcntnote,( in
order to restore tbe original level on the second e of tbe sequence).

Comment: Tbe most common example ef thic patterD is tbe d5 c5 b4 c5 eoding u'bich uaditionally
b assigoed tbe Scbenkerian analysis (s d5 c5) - (lp d5 b4)(n c5) (or (s d5 c5) - 

(lp d5 ba) (lp ba
c5), as 169 gqrreDl p:user parses it) witb d5 standing for the 2nd aod c5 standing for Oe lst degree.



This melodic pattern is very recurreDt in tbe foreground level of Bacb Chorales aod is best aoalyzed
in lbe form recomrnendcd bere.

2.2.5.3 Dcsirability of prshiog sack on tbe finr b within an (a b c c b c) pattcrD (lo-si4o-do-si
dogush'1

Wben tbe previors sucktop uotc b adjaccot on tbe surface to tbe cureDt notc, and tbe previors
socktop Dotc, cureDt Dot!, curent Dote+t, +2, +3, +4, produce an (a b c c b c) pattern, aod tbe
last notc of this patrcm fdls on a phrase ending, aod tbe first two notes of this patarn are eigbtb
Dotcs, tbcn it is desirable to prsb tbe stack on tbe cureDt Dotc.

Commenc tbese beuristics arc iDcnded for correct parsbg of tbe (e4 eigbth b4 eightb c5 quancr c5
quartcr b4 quarar c5 q'itb fcrurata) patcrns tbat frequeotly eod tbe pbrascs of Bacb chorale melo-
dies.

2.2.5.4 Desirability of pusbing suck on the VU or V of a I-VII or I-V progression (9ush-at-I-l/)

In tbe bass, if tbe previous stacktop pitch and tbe current pircb b adjacenq and the stacktop pircb
end Oe curreot pitch are accompanied by a I-V or I-Vtr progression in some key, theo ir is desirable
to pub stack-

Comnent; Tbere is Do reasoD wby tbese two beuristics sbould not ba valid for tbe descant as weU,
but in tbeir prcsent form tbey produce unwanted pusbes and pops in an otberwise stable melodic line
that bappcns to be accompanied by V-I or l-V. We do Dot tDow tbe eract conditions wbere tbese
beuistics sbould apply to tbe descanl

2.2.5.5 Uodcsirability of ending linear progressions prematwely (ignorc-marginal<scape-from-lp)

Dcfinition: tbree notes form ao almost linear patterD iff tbey matcb ooe of tbe patterns e e f, e f f, e
Ig,eed,cdd,edc.

U tbe previots stacktop sultr is lp, and ((tbe Dote following tbe current one is eitber a repetition of
tbe curreot Dotc or a stcps"ise continuation of tbe cureDt linear progression in tbe cxpected direc-
tion), ortbe notes (previous stacktop Dot€, current note+1, curreDt notc+2) form an almost linear
pattcrn), end if thc curreDt Dot€ coosl.itutcs a jump witb rcspect to tbe previons stacktop Dote, tben
it b uodesirable to canccl tbe current cxpecurtions by reducing (popping tbe stack) during tbe current
8tep.

Example: consider tbe surface pattcm b4 d5 d5 b4 e5 tbat occurs twice in the descant line of 'Jesu
oeine Freude': If tbe current notc is tbe sccond b,4, it would be uswise to reduce at tbe current srcp
(drau'ing tbe uotcbead (n M), aod slur (lp b4 d5) as pan of $e rbs of tbc production (s b4 b4) -(lp b4 d5) (n ba)) and miss tbe obvious connection from d5 to e5.

2.2.5.6 Desirability of popping tbe stack on tbe sccond b of an (a b c c b c) pattem (la-si-do4o-
si4o-pop)

Utbc previotsstacktop note is adjaccotoo tbe surface totbe curreot note, and current note+l has
e fermata oD top of it, and tbe four notes preccding tbe current notc, the currcot note, and curent
notc+t produce an (a b c c b c) pattern, tben it is desirable to pop tbe stack.

2.2.5.7 Recommendation for Dot EissiDg a delayed rcduction on a oomer (delased-corner-
expcc ta t i o n - no t -m issed)

Definition: I corner is .rr\er a bigb corner (a local pitch maximum) or a low comer (a local pitch
ninimum).



U tbe current note sarisfies an irnmediate expectation, and tbe current note is not a higb coroer, and
(tbe currentnotc+l satisfies animnrediate expectation, aod is asomer, and tbe stacktopnote, cur-
rcDt noE, cutrent Dote+l form a scalar motion, or tbe current note+2 is an immediatc expectation,
and is a sonoer, and tbe stackop Dote, current note, current note+2 fotu a scalar motioo, and (the
curent Dotc+l eitber repeats currcnt Dotc or jumps away from it in tbe oppositc direcdon of tbe
rcalar motion produced by tbe sucktop !ote, curent Dor€, and cunent note+2)), tben it is desirable
not to chaoge tbe stack level duriog tbe current step (io order to reduce pcrbaps wben tbe forthcom-
ing coruer notc is scen).

Commenu This beuristic was discussed in tbe texr

2.2.5.8 Heuristic for reducing out upper dcbapp€s (recognEe<cluppe)

Definition: tbe rhythmic strengtb of a note wbose attack point is t cigbrb beats away from the be-
ginning of tbe measure is: if k is divisible by 8 tben 3, else if k is divisible by 4 theo 2, else if k is di-
vbible by 2 tben l, else 0.

U tbe current noc is an ascending second away from tbe previous stacktop note, and the previous
stackmp note, current Dote+1, current oote+2 make an abnost linear pattem, and tbe current Dot.e
jumps a tbitd dowo to curen! Dote+1. and if tbe stacktop oote aod tbe current Dote are adjacent on
tbe surface, and if tbe rythmic strengtb of tbe current norc is less tban tbe rbythmic strengths of botb
tbe stacktop noe and cunent nob+ l, tben it is desirablc to ptsb at tbe curreDt srep.

2.2.5.9 Desirable parsbg of tbe f e d e patt€m (poppiog tbe stack) Ql'o-mi-re-mipop)

If tbe previous stacktop state is a descending lp, and not(tbe previous srackop note is tbe immediately
preceding notc iD tbe input" and bas a fermata on it), and tbe current Dote star6 an lp in tbe opposic
direction, and tbe cunent note is also a stepu'ise continuation of tbe progression on tbe previous
stacktop-!, aod tbe curent oote is uot in tbe middle of a scalar motion, tben it is desirable ro pop.

Commeot: th is is intcndedforencouragiogapopattbelastnotcofthefedeandfeedesequeDces
meotioned above.

2.2.5.10 Recommendadon for not rrissing a delayed opponunity for counecting equat or chro-
maticall y related pitchcs (d e lay d - s I ur - b t we n < qu o l -p it c h e s)

Uthe current Dot€ is an immediate erpectatioo, and (the cuneDt note+l is an immediate expectation,
end is cqual in pitcb to the last note of tbe pcnding progression on staclitop-l, aod il tbe stacktop
Dotc, curreot Dote, and curreot note+l form a scalar motion, or tbe current note+2 is an immediate
expcctation, and is equal in pitcb to tbe last oote of the pending progression on stacktop-I, and if rbe
stacktop note, current ootc, aod current note+2 form a scdar motion, and (tbe current note+ I eitber
rcpeaB tbe current note, or jumps away from the current note and reacbes curent notc+2 agaio witb '

e jump), tben it is dcsinble to keep tbe stack level the same during the current step (in order ro reduce
pcrbaps wben tbe fonbcoming notc whicb is equat in pitcb to the last stackrop-l Dore is seen).

2.2.5.11 Desirability of resuming a pending linear progression on a curent note, wben tbe currenr
Dotc is a comer (comcr<xpctation-not-missd)

Definition: two Dotts y,z forn a condnuatioo of a linear or uncommittcd progression on tbe
ttacktop-l cntry, wbose last Dote is r, iff

tbeprogressionbanascendingl ioearprogressionandxyzmatcboneofefg,eef,ef f ,

or theprogressiooisadescendiogl inearprogressionandxyzmatcboneofedc,eed,e
dd,



or tbe progressioo b uncommitted rod r y z Datcb ooe of e f g, c c f, e f f, c d c, e e d, e d
d.

U tbc current ootc satisfies a pcoding crpecurtioD, and tbc $acktop mt!, curreDt notc and current
ootc+l foru e oorDer pattrrD, end (tbe sureut Dotrr guFent DoE+t form r cootinuation of tbe
progrcssion oD stacktop-t, or if tbe last stacktop-l Dotr, cunent Dotr, curcnt ootc+ I form an upper
rcigbboroote paltcrn), tbeo it is desirable to pop tbc stack (in order to contioue tbe pending linear
progressioo).

L2.5.12 Tbe inmediate neigbbor Dotc beuristic (neighbornote-push)

U tbe previors stacttop note, and cureDt notr .rc cigbtb Dotes, ud tbc previous stacktop note is on
tbe strong positioo and tbe previors stacktop Dote, cuneot note and cureDt note+l produce a lower
rigbbor note patt m, i. rd tbe FlttcrD is oot tbe e5 d5 c5 in tbe middle of a mid-phrase f5 e5 d5 e5
d5 c5 progrcssion, or if tbe prcvious state is uncommitted, aod tbe previors stackrop notc. tbe cunent
mtc and cutreDr notc+t producc aD upper oeigbbor Dotc pattcm, it b desirable to push sometbing
on tbe srack.

2.2.5.13 Desirability of puhing wben going away from &g ssrling of tbe curreDt phrase Qtush-
vfu n -g o in g < *o1t -fro m < n d in g - n o t e)

U tbe current Dotc is a step away from tbe previous stacktop note, and if tbe previous state is un-
commitrcd, aod tbc previors stack level is two or hss, and tbe previors stacktop pitcb is equd to tbe
ending pitcb of tbe current phrase, or if tbe voicc is bass aod tbe previors stacktop oote is aB octave
away from tbe eoding note of tbe current pbrase, tben it is desirable to pusb (in order to reduce per-
baps at tbe pbrase cnding).

2.2.5.14 Desirability of rcducing on tbe I of a V-I or Vtr-I progressioo Qtop-ot-Y-fl

In tbe bass, if tbe prcvious stacktop pitch and tbe current pitcb is adjaccnt" and stacktop pitcb and the
current pitch are accompanied by a (relative) VJ or VII-I motion of roots, tben it is desirable to re-
ducc on tle cunent notc.

2.2.5.15 Avoiding completcly rni<sing tbe expectations because of tbe beuristic about not reducing
within a scalar pattcrn (do n t -m iss <rpctot ion)

U tbe cureot ootr is an immediatc erpecurtion, and in tbe previors piurer step tbe beuristic about
rct popping within a scdar pattern was satisfied, eod thc currcnt ootr moves to current note+l by
rtcp, end curreot note+l is mt en immediate erpcctetion, or tbc cureDt Dotr Doves to curtent
ootc+2 by stcp, and current notc+2 b not an irumediate erpectatioo, aod (curreot notc+t is citber
r repctition of tbe currcnt Dotc, or is not an immediatc crpcctation), it is desirable to pop.

2.2.5.16 Pnshing tbe stack during a (c5 b4 c5 d5) pattcm (do-si4o-rc-push)

If rbc currcnt Dote Doves a dowoward step away from tbe previous stacttop notc, and (tbe previous
statc is rncommittcd, or tbe previors state b an uo-tiltcd lp, and tbe current Dotc moves in tbe op-
positc directioo of this lp), and tbe curreot oolcr curent note+l, and current oote+2 form and as-
cending scdar motion, tben it is desirable to pusb tbe stack.

Commeot: Tbis is to counteract tbe change-to-lp-towrd-goal heuristic io placcs like tbe b4 in the
pattcrn c5 b4 c5 d5, wberc b4 poins toward tbe expcctatiors of tbe progression suniog at c5.

2.2.5.17 Desirability of moving 0oward expectatic-' -rith a linear progression (c/range-to-lp-
to*ord-gool)



lo tbe descant, if tbe current note moves by step witb respect ro tbe last sucktop Dote, and (tbe pre-
vious state is an lp implies tbat it is not a tilted lp and tbe cuneot note is staning a neu' lp in tbe op-
posite direction), aod aU immediaa expectatior$ of tbe stacktop-l progression ale in tbe direction
tbat tbe currenr ootc poins to, and tbe current Dote is Dot i6elf ao funmediate etpectation of the
Etacktop-l progression, tben it is desirable to bold tbe suck.

2.2-5.18 Desirability of recognizing ut arpeggio (rccognize-arpeggio)

U after eotering an uncommittcd state through a jump, anotber jump completbg an arpcggio paltero
b encountered, it is desirable 16 lgtrin tbe curent suck level.

2.2-5.19 Desirability of recogniziag an anticipatioo pattem (rccognize-anticipation)

U tbe current note is an eigbth oote on a weak eightb beat, and is equal in pircb to tbe current note+ l,
and rbe curreDr note is an immediate expectation, then it is undesirable to pop tbe stack during tbe
current step (so tbat tbe stack nay be popped during tbe next stcp wbeo tbe note oo tbe srrong beat
is sccn).

2.2.5.20 Avoiding reduciog at tbe second of a pair of repeated pitcbes (dont-pop-at<qual-pitch)

U tbe current note is equal to tbe stacttop Dot€, or if tbe voicc is bass and tbe curent notc is ilo octave
rpart from tbe previors stacktop notc, and the current oote is an immediaa erpectation. and not(tbe
prcviors stacktop note and the current Dotc ire adjacent on tbe surface and form an aoticipation
patterD wbere tbe previous stacktop note is an eigbtb Dotc on a weak eigbth beat), tben it is undesir-
able to pop at tbe cunent step.

Comment: a decision was made not to pop tbe stack for some reason wben tbe previous stacktop Dote
was seen, tbis beuristic defers to tbat decision on tbe repetition of tbe stacktop Dote.

2.2.5.21 Desirability of reducing oo a pbrase 36rting Qtop-at-phrav<nding)

It is desirable to pop the stack wben tbe current note marks tbe end of a phrase.

Comment: This is in confonnance witb tbe idea tbat it is dcsirable to pop wben tbe current note is
more imponant tban tbe stacktop note iD some sense aod to push wben tbe cuneot note is less im-
portaDt tban tbe stacktop Dotc in soEe seose. A pbrase endiog notc is more imponaot tban tbe sur-
facc note precerling it-

2.2.5.22 Avoiding reducilg in tbe middle of a scalar pattern (dont-pop-within-scolar-patrern)

U (tbe previous stacktop Dote, current note, curreDt Dot€+l fonn a scalar pattlm. or tbe previous
stecktop no!e, current oolf, cureDt notc+2 foro a scalar pattcrn and curreot Dote+l is a repetition
of tbe currcnt note ), and tbe cureDt oot ls an inrmediate erpectadon, it is desirable to bold tbe stacli
at tbc curreDt stcp.

2.2.5.23 Desirability of coanecting equal or cbromatically related pitcbes (slur-btnencquol-
gitches)

It b desirable to pop if tbere is a cbance to ooDnect egual or chromatically related pitcbes, i.e. wben
tbe current Dote is cqual in pitch to tbe last note of tbe previous stacttop-t progression.

2.2.5.24 Desirability of reducing on a phrase beginning Qtop-at-phrase-bginning)

U tbe current Dot€ is a phrase beginning, tben it is desirable to pop the stack at tbe current step.
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Commenc A phrase beginniog oote is a good reduction sitc, Dot becruse of is surface cbaractcristics,
but because it oftcn constitutes a nicr place to resuoe a dcep progression, wbose last nore is not tbe
immediaaly preceding note.

2.2.5.25 Desirability of reducing at tbe eod of a lincar progrcssioo followcd by a jump or a cbange
of direction Qt op < t -jump ing - lp)

lf tbc previous state is lp, and the current ootc eirbcr rcpcats tbe prcviors sucktop note or continues
thc lp by stcp, and tbe cunent Dotc is an expectation, and (the current ootc+l constitutcs a jump
witb respect to lbe current Dotc, or tbe curreut ootc+ I stans a ncw lp in tbe opposite direcdon), tben
it is desirable ro pop at tbe current step.

2.2.5.26 Default-nopr.rsb beuristic (defoulr-nopush)

(In tbe absence of any higber priority beurisric) avoid pushing down tbe stack.

Comment: tbis bcuristic, altbougb not ricb in musical information oontlnt, was found to be generally
prudent since a wroog pusb sup may lead to higb stack hvels tbat are Dot c:rsy to get out of. More-
over, this beuristic automatically eliminates tbe need for many "it is desirable not to push ..."
bcuristics.

2.2.5.27 Dcsirability of rbe dominant stat€ in tbe bass (grefer4om-u-6ass)

In tbc bass, it is dcsirable to move to tbe dominaDt state (ratber rban e.g. to tbe uDcommitted state).

3i l



APPENDIX C:

The compilation dgorithm tor L.

Wc give below a synopsis of tbe compilation algorithm for the l. subser of BSL, in a C-lite notarion.
Tbe algorithm assumes tbat tbe object language is C. Tbe traastadon of BSL rcrms and atomic for-
mulas into C bas not been elaboracd iD tbjs synopsis.

boolcan referenced[MAXLABETS]; /. initially alt false ./

iot nen'labelo; /' rcturns a fresb label. /

void pO; ./' prinrs object code. /

boolean compile (F,tl,fl ,ut,vars,prshed,dst)

Iist F; /. tbe formula to be compiled .,/
iot tl; /. tnte exir label ./
int fl; /. false exit labet .,/
boolean nxt; /. true iff true exir

is tbe imrnediaaly foUowing statcment.,/
list van; ,/'destructible variabtes .,/
boolean pushed; /. false iff F occurs in witbin .fir

' in rbe coorcxt (or f, 41
or (E x ... Fr),
and variables bave not beeD pushed down ./

boolean dst; /.tne iff Oere is an enclosing univenal
quandfier./

I
int lab;
int loop;
boolean temp;

i f  (F is ( : -  l r ))

Iif (lprsbed) p(push rzrs,R/;");
P("1-(") ;
if ( !orr) I p( "goto Lt I;" )i referenced[rtJ- rrue ; I
retum(tnre);l

elsc if (F b (relop t, r))

lif (pushed)

lp("il (!F) backrrock;");

erse if ( nxt) r o (..il(i B 
)ri?l. 

ffi:,h]*:::fi::,t-i 
rnre ; l I
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clse {p("if (F) goro Ltli')i rcferenccd[tl]-rnre;l
rctura(pushed);f

elsc if (F is (and F, ft)

{lab-nsY1t6t11''
tcnp-cs jlpilc (F1,lab,fl ,tnre,vars,pushed,dst) ;
if (refcrencedllab]) p(,,Lla b:;,' );
retur(compile (4,tl,fl,nxt,van,temp,dst) ) ; I

elsc if (F is (or \ F))

llab-newlabelg;
lcmp- cpsrpile (Fr,tl,lab,false,vars,f alse,dst) ;
if (amp) p("R/aD: pop wrs;,,);
if (referenced[lab]) p(,L)a b: ;,, ) ;
rctum ( compile (.F2, tl,fl ,nrt, vars, pusbed, dst) | | temp ) ; l

else if (F is (E ((r Dp)) F,))

[P("{static tw x;");
if (dst) varr- v.us u [x];
tcmp- cs6pile (F1,t!,fl ,nxt vars,pusbeddsr) ;
P("1") ;
retum(amp); l

else if (F is (A x init cond incr F))

lil(lpusbed && fi bas assignmens in it)
{p("pttsh wrs,Rf I;" ) ; p$hed 

- rrue ; I
looPrncwl369ll;'' 
lab-oewlabel0;
p("{static int x;");
p(..r-rar4");
p(" U o op : it (! c on d) goro l-rl; " ) ; refereoced[tf J _ rrue ;
viusrvars u l:l;
tcmp- c66pile (F,,lab,fl ,true.vars,pllshed,true ) ;
if (rcferenccd[tab]) g(,LIa b: ;', );
g(,, x - 

incr; goto U oop;1,. );
rctum(Enp);l

cbc if (F is (E x inir cotd incr F))

lif(lpushed && fi bas assignmenrs in it)
lp(. ptsh wrs,Rfl ;" ) ; pusbed 

- r.rue ; I
looP-n6\r hbel1;'
lab-oewlabelO;
P("lstatic int x;");
p(...r-rntl;");
if (pusbed) p(,,Uoop: if (lcond) backnack;',);
else I p( "L/o op: tI (! c on d) goto L,f/; ") ; refe renced[fl ]_ rnre ; ]
if (dsr) var.srvars u lr|;
t!mp- csppile (F,,tl,lab,false,r,ars.f alse,dst) ;
if (temp) p("R/aD: pop wn;");
if (referenced[labJ) p( lJa b:;" );
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p('.x- rncr; goto Lloop;1");
return(cmp I I prsbed);l

l

Note: this algorithrn will produce inconect code for subformulas of the form (or fi FJ, wben only
one of F1, ̂ F2 contains assignmens, and u'ben "prsbed" is initially false. For e:ample tbe formula (or
(or (:- x 0) (< y 0)) (:- x l)), will cause sucb an eror. Tbe remedy is eirber to make such unlikely
formulas forbidden and detect tbem (tbe preseot compiler {s€s thir, using a variant of this algorithnt),
or to peek into an (or ...) for assignmens abead of compiling it, aud prsh destructibles in advance if
tbere are any, wheu "pusbed" is initially false.
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APPENDD( D:

Udrg BSL rt the IBM ThonesJ. lVecon Rcseerch ceDter

Tbe present BSL compiler is writtco in Wt/Lisp, and ruDs on IBM 3081 and 3090 computers at
tbc IBM Tb rmas J. Wason rescarcb qeuter, under tbe CMS operaring syst€m. To use BSL on the
YI(TVMH or YI(TVMH2 machines (as of December 1986) place tbe foUon'ing line in your profile
erec:

GIME KElvtAL 200 C

Then tbe comrnand

BSL filename

will invoke a REXX progra$ tbat will first compile tbe BSL prognm in "filenamc BSL" and place
tbe object code in "filenome C" and "filenarne H", and will tben call the PL.8 compiler to compile
"fibname C" into [rachine cde. "filenome H" is an include file for "fibnane C".

It is also possible to specify tbe C compiler to bc rsed as tbe first option to the BSL command (PL8
or ATT or ATTBIG). PL8 is tbe default- ATTBTG uses a modified version of tbe AT&T compiler
tbat allows tbe very large C prograrns produced by tbe BSL compiler to be compiled. Any options
o$er tban tbe first are passed to tbe C compiler.

A BSL program compiled witb tbe PL.8 compiler, e.g. by using tbe command "BSL filename", cao
be nru by entcring the command:

CRUN

A BSL program compiled rsing tbe AT&T compiler, e.g. by rsing tbe com.maod "B.SL filenonte
(ATT'can be run by entering:

GLOBAL TXTLIB ALIB PLIB CIO
LOI+D filenarne BSLLIB (START

(BSLLIB TEXT @nr-ine tbe BSL runtime library).

Tbe files "'BSL" on tbe KEMAL 200 disk conain sample BSL prograrns.

.Tbe presenrly available compiler optioru are listed below. Option statlmeots sbould be placed before
tbe first dr statcment .rnless otheru'Lse indicatcd.

optioD

registers

possible
values

(xr r,)

default
value

uil
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Tbe iouger or enumeration tlpc variabtes rr ...r" are allocared in regisan if possible. ln the present
implementation, rcgister variables are globat over tbe predicatc deiinitions and tbe mail formula:
cacb occuneocc of tbe srme slmbol is altocatcd to tbe sarue rcgister. Regisar variabtes are saved
rod restored for backtracking as ordinary variables are, i.e. outy when tbey rre declared witbin tbe
rcope of a universal quandfier. Tbns, care mut bc tatcn to eruurc tbat Oe aoDtcDB of a register
variable ar€ Dot inadvertcntly destroyed while rbey are stilt needed, via ao assigumeot to anotber
insunria$on of a variable with the s:rme Daoe.

enable_ib t lail nil

Wben t, tbe inalligent backrracting recbnique is eoabted.

caable_ibstat t Inil nil

Wben t" geDer:ltcs code to print sndstics about tbe success of iotelligent backuacking at tbe end of
lbe run.

trace t lnil nil

Wbeo g eode to print staGnents as tbey are bcing erecurcd is geoerated. Printing can be disabled
via an intcractive interface cncred via a CP EXT inrerrupt (available only on tbe Attt version for
tbe momeot). Eoaring ? liss tbe possible comroaods. This oprion c^" be enabled or disabled in
options sultelnents occuing in any place wirhin tbe program.

optimi'e t Inil DiI

Wben L subformulas of tbe form (E.r -.. (and Fr ... F, Fr*r ... {")), where r does Dor occur in rr,...
Frzre replacedby(aod Fr. . .Fr(Ex.. . (andF.rr . . .  jL))) .  Subformutasof rbeform(Ax.. . (orF,
-.. 4 f..r ... f.)), wbere .r does oot occur in f!, ... F., are similarly uansformed. For reasons of effi-
ciency, full macro-exPan"ion of defined constaots is not performed while determining tbat r does oot
occur in an f,: tbus, defined coostans used wirhin Fr ... F.shoutd not evatuare to i, since tben tbe
occurencc of .r will oor be rccognized.

printout t lnil r

Wbeo t' cnables tbe generation of code for tbe automatic printout of variables rl ... r, cach time a
uain fonnula of tbe fonn (E ((xr tw) ... (x, 0p))...) is successfully executed, as well as for rbe
printout of "yes" or "Do" at tbe end of tbe run.

impon t Inil nil

Wbeo t' lbe initiali"ation code for cxtcraal arrays and tbe code for fuoctioo bodies is not generared.
This optioo is rseful for producing an include file to be rsed by crrcmally compiled C funcrions.

ln tbc standard macro file "stdnac", defiaitions for tbe follou'ing macros are availabte, in addition to
tbe dcclarations for tbe staDdard l/O functions, aod tbe eoumeration type boolean, whicb is defined
rs "(dt boolean (fdse true))".

(l + x) expands into (+ r l).

(l- r) expands into (- r 1).
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(member: G...y,)) expands into (or (-- rlt) ... ('- r,v.))-

(eval u) gives tbe result of apptying the lisp evd function to u, aftcr expanding the constants
and macros in u o the fullest cxteoL

(Em 9 (h ...q,) (F QD, wbere O is an atom, expands into (or (f A) -.- (F q,)).

(Em (9r .- Q) ((gr.r -.. 4) .-' (qa ...Q,)) (F Qr "' Q)), wbere Q1.",Q, at? arolns' ex-

pands iuro (or (F6; ... h) ... (F q,t...e*)).

(Nn Q (q...q,\ (F QD, wbere Q is an atom, expaDds into (rnd (Fqr) ... (FA)).

(Am (Qr ..- Q) (qu.-.firt) ... (q,t.-.4,)) (F Qr "'Q))' wbere Qr*",Q, are atorns' ex-
pands into (and (F41; ...Qv) ... (F qa...q,)).

(imp F G) expands into (or (Dot I-) 6).

(dumpl 4 ... r.) expands into (and.yr ... 
-v"), 

wbere for cacb i-L,.--Jt, li is (dump a k) iI x,
b of the form (ARR o k), and y,is (dump r,) il x, b not of rhic fe61. (getl rr ... r,) and (putl
rr ..- r,) are simitarly defined macros tbat generatc (get ...) and (put ...) statcments, re-
spcctively.

(ddpp (( tOUn \W).. . ( tOUn x,Dp)) F),n2 0, expands into (df p (( toLrn x1t1p1)
... (tOLJTl x, W) (OI.l-f 

-R 
boolean)) (if F (:- 

-R 
true) (:- 

-R 
false))). However,

nil is generated in place of "(if ...)" if F is nil. Tbe purpose of this macro is to implement
detcrmisistic and side-cffect-frce predicates as funcdons, by jrst changing "dp" to "ddp",
so thar tbey can be used io contexls wbere genuine predicate calls are oot dlowed

We rao a number of programs to see bow BSL's performzlnoe oompares with Prolog and Lisp, uing
tbc languagc imptementations available to us on tbe tBM 3090 uoder CMS, namely the VM/Prolog
inrcrprcer, the VM/Lisp compiter, and a C compiler derived from tbe PL.8 opdmiziog compiler

[Warren et al. 86J (tbe BSL compiler irself is writen in VM/Lisp and generates C code). All avail-
able optimizatioos sucb as itcration (do) constnrcts, uncbecked fixed arithmetic, eq irstead of equal,
uncbccked car/cdr operations, and oonintemtptible code for Vlvl/Lisp, and static clauses for
VM/Prolog, were used.6o The table below tists tbe results of the comparisons, along with tlre logical
trarstatiors of tbe BSL prograrus uscd in tbe benchmarks. Tbe Lisp and Prolog venions are also
given for two of tbe beocbmarks, in order to provide ooncretc examples of wbat wc are ctmparing.
Tbese programs are all oaive scarch algoritbms derived directly from a logical specification (witbout

eny refinement). Faster algoritbms are cenainly known for these problems, for example, in tbe
queens problem, keeping a rccord of rbe taken diagonals will achieve an obvbus speedup. But the
benchmarks should stilt give en llea about the raw scarcb capability of tbc different language implc-
nenrarions, which b a very imponant capability for tbe design of complex and computation-inuosive
erpert syst€ms, wbere one usually bas to opt for the simplest specificatiors anyway, and wbere
band-optimization of individual parts of the system is rsually impractical. Tbe same naive algoritbms
ue rsed in all three laoguages, but the solution, wben it is of an array type in BSL, is represented as
r list of inrcgen in tbe Lisp and Prolog progr:lrns, whicb only nceds o be accesscd scquentially, in
order not to aggrirvare tbe differences due to aray vs. list Epresentatioos. Tbe times given are the
IBM 3090 vinual cpu time in seconds to exhaust tbe scarch space, without printing resuls.

Wirhoul rhc cqgal-)cq. fucd rrithnrctic. unchcclcd opcrztion and nonintcmptiblc codc optirnizations. VM/Lisp is

rbscd dof,T bi I facror of 9.t-16.4 (5.7 on dslalpha). and without the static cllsc optinizarion VM,/Prolog is slor-ed

d' ' . factc 1.37-1.E6 (1.07 on rrienglc): on lhesc particulerprograms.
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prcEram BSL VM/Lisp Lisp/gSL VM/Prolog Prolog/BSL
tirnc time ntio rimc r.tio

&bruijn 2.38 t0.t4
triangle ?.t6 14.60
pcrmulc t.26 19.64

'1.55 ?8.5
t.86 192.3
238 172.r
3.23 87.r
{.50 19.5

quecrs 2.95
dslalphe 2.75

33.0
24.5
20.t
29.5
7.09

9.51
t2.31

dcbruijn: cnuncErlc alt & Bruijn s.qucnces lRalston 82], circularstrings of lenglh MrN cornposcd of digis 0-.."1t{-1, whcre
evcryNdigirbngsubstr inglsdist inct. AnrrrzydofSIZE=M"N+N-IclcmcntsthatbcginswithNM-l 's(andhencccnds
rdtn N-l M-tl) b rscd to rcprtscnt thc circul.rslring. Hcr€ M-2 rnd N-5. Notc: in thc following logicel trarulatioru, the
ssigunents have been lcft inpct, so that thc original BSL pmgranu can bc recovcrcd dircctly.
(3:(arrcy (SIZE) integer))
(Yn lOSn<SIZE)(3j |  0S j<I i0ldln]:- j  & [ncN r d[n]-M-t l  & (vt I  n- l : \>N-lX3i l0SicN)[d[n-i ]*dl l- i l l .

rriznglc: cnrmcrate rll triplcs of intcgcn r,yr.0<r<y<z<400. such thet r"2+y"2^2"2 (Pfhagorean nwrbcn). Thc
Lbp end Prolog progpms arc abo givcn.
( !L.y: : inrc8er)( t i l lSi<3981(3j l i+ lSi<399)(* l j+ lSk<400)[ i . i+ j . j - l . f  &*- i&y:- j&z:- I ] .
Notc: PLt docs not movc up (i'i+ j'j) from tlrc inncnnost quanrificr, bccausc thc "inncr loop" is rc-cntcrcd in thc middlc aftcr
r boclrncling return-

(cornpilc'(tri.nSlcl (lamMa (n)
(prog (nml nnr2)

(scq nml (qsdccl n)) (sctq nm2 (qsdccl nml))
(do ((i I lqsincl i))) ((not (qslcssp i nm2)))

(& ((j (qsincl i) (qsinct j))) ((not (qslcssp j runl)))
(do ((li (qincl j) (qsincl \))) ((not (qslcssp \ n)))

(ond ((eq (qspl6 (qstimcs i i) (qstimes j j)) (qstimcs t t)) (usc i) (usc I (nsc \))))))))))
(compilc '(trianglc (bmbda nil (trienglc I 400))))
(compilc '(usc (lambda (r) nil)))

tznge(' i . ' j . ' r)  (- I t f  i , '11 & rangel( ' i , ' j , 'x).
nnge I ( ' i , '  j , ' i l .
rangc t ( ' i , '  j , ' r)  <- sum(' i .  l . ' ip I  )  & It( ' ip l , '  j )  & nnge I ( ' ip l . '  j . 'x).
rr ienglcl( ' r , 'y, 'z) <- nngc(1J98,'r) & srun('r ,1. 'rpl) & rangc('xplJ99, 'y) & sum('y,1, '1pl) & rangcl '1p1,400, 'z) &
Drd('r.'r.'l I ) & prod('y,'y.'O) & prod('2,'2,'t3) & surn('t l,'O,.t3 ).
lrienglcO (- triangjc I ('r'y,'z) & failO.

pcrrnute: enumenle all pcnaurztions of the digits 0,1,...,8
(+:(.rr.y (9) intcger))(vn |  0Sn<9)(t j  |  0S j<9)[(Vt I  n-l  I  \10)Ur.p{L] l  & p[n]:- l '1.

guccns: find u ll solutions to rhe I l{uccns problcm. Thc roc6 and colurnns are nDmbcrcd as 0,1-..,10. .nd lhc arrey clcmcnts
p[0],....p110] nepncs.nt thc column no. of thc quccn on row 0-..,10. respccrivcly. The Lisp and Prolog programs erc also givcn.
(+:( .my( l l ) inrcger))(Ynl0Sn<tt)( l j l0Sj<! t ) [ (yt ln- t>l l :otUrrpl l ]&ipf t l *n-rs&p[t ] - j *n- l l&p[n] :=j l .

(compile'(qucensl (lambda (n s)
(cond ((not lqslcssp n I l)) (usc s))

(r (do (( j  0 (qsincl D)) ((nor (qslcssp j  i l )))
(cond ((do((k lqsdccl n) (qsdecl \)) (r s (qcdr r)))

((or(null r)
(cq (qcar r) i)
(cq (qsdiffcrcncc j (qcar r))

lgsdiffcrcncc n \))
(cq (qsdiffcrcncc (qcar r) j)

(gsdiffcrencc n \)))
(nul l  r)))

(quccnsl lqsincl n) (cons j  s))))))))))
(conpilc '(quccts (lembdz nil (quccrlsl 0 nil))))

quccnl( l  l , 'x. ' r)  (- /O.
quccnt( 'n.t : , 'z) <- ranSc(0,11. 'D & cbeck('r , ' j , l )  & sum('n, l , .npl) & quccnl(.npt.. j . .r . .z).
chccE(nil,'.t).
chcck('pI.' rcst,' j,t nminusli)
surn('nnrinusk. l,'ncq'nml) & chcck(.rest..j..neu'nmk).
quccnsO <- quccnt(0,nil.'r) & fail().
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dslatpha: crltnenrle thc nemcs of thc sup,plien sho supply all pans. Erecutcd 100,000 timcs. Tr\cn from a DSL AlJltA

quc4' for thc supplkrs-pers daubasc in [Dere ??]. Prolog is doing well herc pcrh:p bccarsc of clersc indcxtn&

(3psp)
[s-'((s-sno Sl s-cname SMITH s-status 20 s-city LOI{DO}9 ..')" & 

- --
t-'11plno Pl pJname liUT p--color RED p-wcigtrr 12 p-city LONDOI9 "')* & .
rp"((sp-3no Sl rp3no Pl sp-qty 300) ..')'&
(lnssnamct)ryc)

(ln l0<n<S_SIZE)' 
ttvi tosicF_stzExii los j<sP-stzE)[spU].sp-src-slnls-sno & cptilspJm-p[i].p3noJ & eru:-s[n].s-snemcll'
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